package scalaz //// /** * Profunctors are covariant on the right and contravariant on the left. */ //// trait Profunctor[=>:[_, _]] { self => //// /** Contramap on `A`. */ def mapfst[A, B, C](fab: (A =>: B))(f: C => A): (C =>: B) /** Functor map on `B`. */ def mapsnd[A, B, C](fab: (A =>: B))(f: B => C): (A =>: C) //// val profunctorSyntax = new scalaz.syntax.ProfunctorSyntax[=>:] { def F = Profunctor.this } } object Profunctor { @inline def apply[F[_, _]](implicit F: Profunctor[F]): Profunctor[F] = F //// sealed trait UpStarF type UpStar[F[_],D,C] = (D => F[C]) @@ UpStarF def UpStar[F[_],D,C](f: D => F[C]): UpStar[F,D,C] = Tag[D => F[C], UpStarF](f) sealed trait DownStarF type DownStar[F[_],D,C] = (F[D] => C) @@ DownStarF def DownStar[F[_],D,C](f: F[D] => C): DownStar[F,D,C] = Tag[F[D] => C, DownStarF](f) implicit def upStarProfunctor[F[_]:Functor]: Profunctor[({type λ[α,β]=UpStar[F,α,β]})#λ] = new Profunctor[({type λ[α,β] = UpStar[F,α,β]})#λ] { def mapfst[A,B,C](h: UpStar[F,A,B])(f: C => A): UpStar[F,C,B] = UpStar(h compose f) def mapsnd[A,B,C](h: UpStar[F,A,B])(f: B => C): UpStar[F,A,C] = UpStar(a => Functor[F].map(h(a))(f)) } implicit def downStarProfunctor[F[_]:Functor]: Profunctor[({type λ[α,β]=DownStar[F,α,β]})#λ] = new Profunctor[({type λ[α,β]=DownStar[F,α,β]})#λ] { def mapfst[A,B,C](h: DownStar[F,A,B])(f: C => A): DownStar[F,C,B] = DownStar(fa => h(Functor[F].map(fa)(f))) def mapsnd[A,B,C](h: DownStar[F,A,B])(f: B => C): DownStar[F,A,C] = DownStar(f compose h) } implicit def upStarFunctor[F[_]:Functor,D]: Functor[({type λ[α]=UpStar[F,D,α]})#λ] = new Functor[({type λ[α]=UpStar[F,D,α]})#λ] { def map[A,B](m: UpStar[F,D,A])(f: A => B) = upStarProfunctor[F].mapsnd(m)(f) } implicit def downStarFunctor[F[_]:Functor,D]: Functor[({type λ[α]=DownStar[F,D,α]})#λ] = new Functor[({type λ[α]=DownStar[F,D,α]})#λ] { def map[A,B](f: DownStar[F,D,A])(k: A => B) = DownStar(k compose f) } //// }