package scalaz //// import scalaz.Id.Id /** * A type giving rise to two unrelated [[scalaz.Traverse]]s. */ //// trait Bitraverse[F[_, _]] extends Bifunctor[F] with Bifoldable[F] { self => //// /** Collect `G`s while applying `f` and `g` in some order. */ def bitraverseImpl[G[_] : Applicative, A, B, C, D](fab: F[A, B])(f: A => G[C], g: B => G[D]): G[F[C, D]] // derived functions /**The composition of Bitraverses `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bitraverse */ def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[({type λ[α, β]=F[G[α, β], G[α, β]]})#λ] = new CompositionBitraverse[F, G] { implicit def F = self implicit def G = G0 } /**The product of Bitraverses `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bitraverse */ def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[({type λ[α, β]=(F[α, β], G[α, β])})#λ] = new ProductBitraverse[F, G] { implicit def F = self implicit def G = G0 } /** Flipped `bitraverse`. */ def bitraverseF[G[_] : Applicative, A, B, C, D](f: A => G[C], g: B => G[D]): F[A, B] => G[F[C, D]] = bitraverseImpl(_)(f, g) def bimap[A, B, C, D](fab: F[A, B])(f: A => C, g: B => D): F[C, D] = { bitraverseImpl[Id, A, B, C, D](fab)(f, g) } /** Extract the Traverse on the first param. */ def leftTraverse[X]: Traverse[({type λ[α] = F[α, X]})#λ] = new Traverse[({type λ[α] = F[α, X]})#λ] { def traverseImpl[G[_]:Applicative,A,B](fa: F[A, X])(f: A => G[B]): G[F[B, X]] = bitraverseImpl(fa)(f, x => Applicative[G] point x) } /** Extract the Traverse on the second param. */ def rightTraverse[X]: Traverse[({type λ[α] = F[X, α]})#λ] = new Traverse[({type λ[α] = F[X, α]})#λ] { def traverseImpl[G[_]:Applicative,A,B](fa: F[X, A])(f: A => G[B]): G[F[X, B]] = bitraverseImpl(fa)(x => Applicative[G] point x, f) } class Bitraversal[G[_]](implicit G: Applicative[G]) { def run[A,B,C,D](fa: F[A,B])(f: A => G[C])(g: B => G[D]): G[F[C, D]] = bitraverseImpl[G,A,B,C,D](fa)(f, g) } // reduce - given monoid def bitraversal[G[_]:Applicative]: Bitraversal[G] = new Bitraversal[G] def bitraversalS[S]: Bitraversal[({type f[x]=State[S,x]})#f] = new Bitraversal[({type f[x]=State[S,x]})#f]()(StateT.stateMonad) def bitraverse[G[_]:Applicative,A,B,C,D](fa: F[A,B])(f: A => G[C])(g: B => G[D]): G[F[C, D]] = bitraversal[G].run(fa)(f)(g) def bitraverseS[S,A,B,C,D](fa: F[A,B])(f: A => State[S,C])(g: B => State[S,D]): State[S,F[C, D]] = bitraversalS[S].run(fa)(f)(g) def runBitraverseS[S,A,B,C,D](fa: F[A,B], s: S)(f: A => State[S,C])(g: B => State[S,D]): (S, F[C, D]) = bitraverseS(fa)(f)(g)(s) /** Bitraverse `fa` with a `State[S, G[C]]` and `State[S, G[D]]`, internally using a `Trampoline` to avoid stack overflow. */ def traverseSTrampoline[S, G[_] : Applicative, A, B, C, D](fa: F[A, B])(f: A => State[S, G[C]])(g: B => State[S, G[D]]): State[S, G[F[C, D]]] = { import Free._ implicit val A = StateT.stateTMonadState[S, Trampoline].compose(Applicative[G]) new State[S, G[F[C, D]]] { def apply(initial: S) = { val st = bitraverse[({type λ[α]=StateT[Trampoline, S, G[α]]})#λ, A, B, C, D](fa)(f(_: A).lift[Trampoline])(g(_: B).lift[Trampoline]) st(initial).run } } } /** Bitraverse `fa` with a `Kleisli[G, S, C]` and `Kleisli[G, S, D]`, internally using a `Trampoline` to avoid stack overflow. */ def bitraverseKTrampoline[S, G[+_] : Applicative, A, B, C, D](fa: F[A, B])(f: A => Kleisli[G, S, C])(g: B => Kleisli[G, S, D]): Kleisli[G, S, F[C, D]] = { import Free._ implicit val A = Kleisli.kleisliMonadReader[Trampoline, S].compose(Applicative[G]) Kleisli[G, S, F[C, D]](s => { val kl = bitraverse[({type λ[α]=Kleisli[Trampoline, S, G[α]]})#λ, A, B, C, D](fa)(z => Kleisli[Id, S, G[C]](i => f(z)(i)).lift[Trampoline])(z => Kleisli[Id, S, G[D]](i => g(z)(i)).lift[Trampoline]) kl.run(s).run }) } def bifoldLShape[A,B,C](fa: F[A,B], z: C)(f: (C,A) => C)(g: (C,B) => C): (C, F[Unit, Unit]) = runBitraverseS(fa, z)(a => State.modify(f(_,a)))(b => State.modify(g(_,b))) def bisequence[G[_] : Applicative, A, B](x: F[G[A], G[B]]): G[F[A, B]] = bitraverseImpl(x)(fa => fa, fb => fb) override def bifoldLeft[A,B,C](fa: F[A, B], z: C)(f: (C, A) => C)(g: (C, B) => C): C = bifoldLShape(fa, z)(f)(g)._1 def bifoldMap[A,B,M](fa: F[A, B])(f: A => M)(g: B => M)(implicit F: Monoid[M]): M = bifoldLShape(fa, F.zero)((m, a) => F.append(m, f(a)))((m, b) => F.append(m, g(b)))._1 def bifoldRight[A,B,C](fa: F[A, B], z: => C)(f: (A, => C) => C)(g: (B, => C) => C): C = bifoldMap(fa)((a: A) => (Endo.endo(f(a, _: C))))((b: B) => (Endo.endo(g(b, _: C)))) apply z //// val bitraverseSyntax = new scalaz.syntax.BitraverseSyntax[F] { def F = Bitraverse.this } } object Bitraverse { @inline def apply[F[_, _]](implicit F: Bitraverse[F]): Bitraverse[F] = F //// //// }