/* __ *\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL ** ** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\___/_/ |_/____/_/ | | ** ** |/ ** \* */ package scala.util.parsing.combinator import scala.util.parsing.input._ import scala.collection.mutable.ListBuffer import scala.annotation.tailrec import scala.annotation.migration import scala.language.implicitConversions import scala.util.DynamicVariable // TODO: better error handling (labelling like parsec's <?>) /** `Parsers` is a component that ''provides'' generic parser combinators. * * There are two abstract members that must be defined in order to * produce parsers: the type `Elem` and * [[scala.util.parsing.combinator.Parsers.Parser]]. There are helper * methods that produce concrete `Parser` implementations -- see ''primitive * parser'' below. * * A `Parsers` may define multiple `Parser` instances, which are combined * to produced the desired parser. * * The type of the elements these parsers should parse must be defined * by declaring `Elem` * (each parser is polymorphic in the type of result it produces). * * There are two aspects to the result of a parser: * 1. success or failure * 1. the result. * * A [[scala.util.parsing.combinator.Parsers.Parser]] produces both kinds of information, * by returning a [[scala.util.parsing.combinator.Parsers.ParseResult]] when its `apply` * method is called on an input. * * The term ''parser combinator'' refers to the fact that these parsers * are constructed from primitive parsers and composition operators, such * as sequencing, alternation, optionality, repetition, lifting, and so on. For example, * given `p1` and `p2` of type [[scala.util.parsing.combinator.Parsers.Parser]]: * * {{{ * p1 ~ p2 // sequencing: must match p1 followed by p2 * p1 | p2 // alternation: must match either p1 or p2, with preference given to p1 * p1.? // optionality: may match p1 or not * p1.* // repetition: matches any number of repetitions of p1 * }}} * * These combinators are provided as methods on [[scala.util.parsing.combinator.Parsers.Parser]], * or as methods taking one or more `Parsers` and returning a `Parser` provided in * this class. * * A ''primitive parser'' is a parser that accepts or rejects a single * piece of input, based on a certain criterion, such as whether the * input... * - is equal to some given object (see method `accept`), * - satisfies a certain predicate (see method `acceptIf`), * - is in the domain of a given partial function (see method `acceptMatch`) * - or other conditions, by using one of the other methods available, or subclassing `Parser` * * Even more primitive parsers always produce the same result, irrespective of the input. See * methods `success`, `err` and `failure` as examples. * * @see [[scala.util.parsing.combinator.RegexParsers]] and other known subclasses for practical examples. * * @author Martin Odersky * @author Iulian Dragos * @author Adriaan Moors */ trait Parsers { /** the type of input elements the provided parsers consume (When consuming * invidual characters, a parser is typically called a ''scanner'', which * produces ''tokens'' that are consumed by what is normally called a ''parser''. * Nonetheless, the same principles apply, regardless of the input type.) */ type Elem /** The parser input is an abstract reader of input elements, i.e. the type * of input the parsers in this component expect. */ type Input = Reader[Elem] /** A base class for parser results. A result is either successful or not * (failure may be fatal, i.e., an Error, or not, i.e., a Failure). On * success, provides a result of type `T` which consists of some result * (and the rest of the input). */ sealed abstract class ParseResult[+T] { /** Functional composition of ParseResults. * * @param f the function to be lifted over this result * @return `f` applied to the result of this `ParseResult`, packaged up as a new `ParseResult` */ def map[U](f: T => U): ParseResult[U] /** Partial functional composition of ParseResults. * * @param f the partial function to be lifted over this result * @param error a function that takes the same argument as `f` and * produces an error message to explain why `f` wasn't applicable * (it is called when this is the case) * @return if `f` f is defined at the result in this `ParseResult`, `f` * applied to the result of this `ParseResult`, packaged up as * a new `ParseResult`. If `f` is not defined, `Failure`. */ def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U] def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U] def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T] def append[U >: T](a: => ParseResult[U]): ParseResult[U] def isEmpty = !successful /** Returns the embedded result. */ def get: T def getOrElse[B >: T](default: => B): B = if (isEmpty) default else this.get val next: Input val successful: Boolean } /** The success case of `ParseResult`: contains the result and the remaining input. * * @param result The parser's output * @param next The parser's remaining input */ case class Success[+T](result: T, override val next: Input) extends ParseResult[T] { def map[U](f: T => U) = Success(f(result), next) def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U] = if(f.isDefinedAt(result)) Success(f(result), next) else Failure(error(result), next) def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U] = f(result)(next) def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T] = if (p(result)) this else Failure(error(result), position) def append[U >: T](a: => ParseResult[U]): ParseResult[U] = this def get: T = result /** The toString method of a Success. */ override def toString = "["+next.pos+"] parsed: "+result val successful = true } private lazy val lastNoSuccessVar = new DynamicVariable[Option[NoSuccess]](None) @deprecated("lastNoSuccess was not thread-safe and will be removed in 2.11.0", "2.10.0") def lastNoSuccess: NoSuccess = lastNoSuccessVar.value.orNull @deprecated("lastNoSuccess was not thread-safe and will be removed in 2.11.0", "2.10.0") def lastNoSuccess_=(x: NoSuccess): Unit = lastNoSuccessVar.value = Option(x) /** A common super-class for unsuccessful parse results. */ sealed abstract class NoSuccess(val msg: String, override val next: Input) extends ParseResult[Nothing] { // when we don't care about the difference between Failure and Error val successful = false if (lastNoSuccessVar.value forall (v => !(next.pos < v.next.pos))) lastNoSuccessVar.value = Some(this) def map[U](f: Nothing => U) = this def mapPartial[U](f: PartialFunction[Nothing, U], error: Nothing => String): ParseResult[U] = this def flatMapWithNext[U](f: Nothing => Input => ParseResult[U]): ParseResult[U] = this def filterWithError(p: Nothing => Boolean, error: Nothing => String, position: Input): ParseResult[Nothing] = this def get: Nothing = scala.sys.error("No result when parsing failed") } /** An extractor so `NoSuccess(msg, next)` can be used in matches. */ object NoSuccess { def unapply[T](x: ParseResult[T]) = x match { case Failure(msg, next) => Some((msg, next)) case Error(msg, next) => Some((msg, next)) case _ => None } } /** The failure case of `ParseResult`: contains an error-message and the remaining input. * Parsing will back-track when a failure occurs. * * @param msg An error message string describing the failure. * @param next The parser's unconsumed input at the point where the failure occurred. */ case class Failure(override val msg: String, override val next: Input) extends NoSuccess(msg, next) { /** The toString method of a Failure yields an error message. */ override def toString = "["+next.pos+"] failure: "+msg+"\n\n"+next.pos.longString def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = { val alt = a; alt match { case Success(_, _) => alt case ns: NoSuccess => if (alt.next.pos < next.pos) this else alt }} } /** The fatal failure case of ParseResult: contains an error-message and * the remaining input. * No back-tracking is done when a parser returns an `Error`. * * @param msg An error message string describing the error. * @param next The parser's unconsumed input at the point where the error occurred. */ case class Error(override val msg: String, override val next: Input) extends NoSuccess(msg, next) { /** The toString method of an Error yields an error message. */ override def toString = "["+next.pos+"] error: "+msg+"\n\n"+next.pos.longString def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = this } def Parser[T](f: Input => ParseResult[T]): Parser[T] = new Parser[T]{ def apply(in: Input) = f(in) } def OnceParser[T](f: Input => ParseResult[T]): Parser[T] with OnceParser[T] = new Parser[T] with OnceParser[T] { def apply(in: Input) = f(in) } /** The root class of parsers. * Parsers are functions from the Input type to ParseResult. */ abstract class Parser[+T] extends (Input => ParseResult[T]) { private var name: String = "" def named(n: String): this.type = {name=n; this} override def toString() = "Parser ("+ name +")" /** An unspecified method that defines the behaviour of this parser. */ def apply(in: Input): ParseResult[T] def flatMap[U](f: T => Parser[U]): Parser[U] = Parser{ in => this(in) flatMapWithNext(f)} def map[U](f: T => U): Parser[U] //= flatMap{x => success(f(x))} = Parser{ in => this(in) map(f)} def filter(p: T => Boolean): Parser[T] = withFilter(p) def withFilter(p: T => Boolean): Parser[T] = Parser{ in => this(in) filterWithError(p, "Input doesn't match filter: "+_, in)} // no filter yet, dealing with zero is tricky! @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def append[U >: T](p0: => Parser[U]): Parser[U] = { lazy val p = p0 // lazy argument Parser{ in => this(in) append p(in)} } // the operator formerly known as +++, ++, &, but now, behold the venerable ~ // it's short, light (looks like whitespace), has few overloaded meaning (thanks to the recent change from ~ to unary_~) // and we love it! (or do we like `,` better?) /** A parser combinator for sequential composition. * * `p ~ q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`. * * @param q a parser that will be executed after `p` (this parser) * succeeds -- evaluated at most once, and only when necessary. * @return a `Parser` that -- on success -- returns a `~` (like a `Pair`, * but easier to pattern match on) that contains the result of `p` and * that of `q`. The resulting parser fails if either `p` or `q` fails. */ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def ~ [U](q: => Parser[U]): Parser[~[T, U]] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield new ~(a,b)).named("~") } /** A parser combinator for sequential composition which keeps only the right result. * * `p ~> q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`. * * @param q a parser that will be executed after `p` (this parser) * succeeds -- evaluated at most once, and only when necessary. * @return a `Parser` that -- on success -- returns the result of `q`. */ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def ~> [U](q: => Parser[U]): Parser[U] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield b).named("~>") } /** A parser combinator for sequential composition which keeps only the left result. * * `p <~ q` succeeds if `p` succeeds and `q` succeeds on the input * left over by `p`. * * @note <~ has lower operator precedence than ~ or ~>. * * @param q a parser that will be executed after `p` (this parser) succeeds -- evaluated at most once, and only when necessary * @return a `Parser` that -- on success -- returns the result of `p`. */ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def <~ [U](q: => Parser[U]): Parser[T] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield a).named("<~") } /* not really useful: V cannot be inferred because Parser is covariant in first type parameter (V is always trivially Nothing) def ~~ [U, V](q: => Parser[U])(implicit combine: (T, U) => V): Parser[V] = new Parser[V] { def apply(in: Input) = seq(Parser.this, q)((x, y) => combine(x,y))(in) } */ /** A parser combinator for non-back-tracking sequential composition. * * `p ~! q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`. * In case of failure, no back-tracking is performed (in an earlier parser produced by the `|` combinator). * * @param p a parser that will be executed after `p` (this parser) succeeds * @return a `Parser` that -- on success -- returns a `~` (like a Pair, but easier to pattern match on) * that contains the result of `p` and that of `q`. * The resulting parser fails if either `p` or `q` fails, this failure is fatal. */ def ~! [U](p: => Parser[U]): Parser[~[T, U]] = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~!") } /** A parser combinator for alternative composition. * * `p | q` succeeds if `p` succeeds or `q` succeeds. * Note that `q` is only tried if `p`s failure is non-fatal (i.e., back-tracking is allowed). * * @param q a parser that will be executed if `p` (this parser) fails (and allows back-tracking) * @return a `Parser` that returns the result of the first parser to succeed (out of `p` and `q`) * The resulting parser succeeds if (and only if) * - `p` succeeds, ''or'' * - if `p` fails allowing back-tracking and `q` succeeds. */ def | [U >: T](q: => Parser[U]): Parser[U] = append(q).named("|") // TODO /** A parser combinator for alternative with longest match composition. * * `p ||| q` succeeds if `p` succeeds or `q` succeeds. * If `p` and `q` both succeed, the parser that consumed the most characters accepts. * * @param q0 a parser that accepts if p consumes less characters. -- evaluated at most once, and only when necessary * @return a `Parser` that returns the result of the parser consuming the most characters (out of `p` and `q`). */ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def ||| [U >: T](q0: => Parser[U]): Parser[U] = new Parser[U] { lazy val q = q0 // lazy argument def apply(in: Input) = { val res1 = Parser.this(in) val res2 = q(in) (res1, res2) match { case (s1 @ Success(_, next1), s2 @ Success(_, next2)) => if (next2.pos < next1.pos) s1 else s2 case (s1 @ Success(_, _), _) => s1 case (_, s2 @ Success(_, _)) => s2 case (e1 @ Error(_, _), _) => e1 case (f1 @ Failure(_, next1), ns2 @ NoSuccess(_, next2)) => if (next2.pos < next1.pos) f1 else ns2 } } override def toString = "|||" } /** A parser combinator for function application. * * `p ^^ f` succeeds if `p` succeeds; it returns `f` applied to the result of `p`. * * @param f a function that will be applied to this parser's result (see `map` in `ParseResult`). * @return a parser that has the same behaviour as the current parser, but whose result is * transformed by `f`. */ def ^^ [U](f: T => U): Parser[U] = map(f).named(toString+"^^") /** A parser combinator that changes a successful result into the specified value. * * `p ^^^ v` succeeds if `p` succeeds; discards its result, and returns `v` instead. * * @param v The new result for the parser, evaluated at most once (if `p` succeeds), not evaluated at all if `p` fails. * @return a parser that has the same behaviour as the current parser, but whose successful result is `v` */ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def ^^^ [U](v: => U): Parser[U] = new Parser[U] { lazy val v0 = v // lazy argument def apply(in: Input) = Parser.this(in) map (x => v0) }.named(toString+"^^^") /** A parser combinator for partial function application. * * `p ^? (f, error)` succeeds if `p` succeeds AND `f` is defined at the result of `p`; * in that case, it returns `f` applied to the result of `p`. If `f` is not applicable, * error(the result of `p`) should explain why. * * @param f a partial function that will be applied to this parser's result * (see `mapPartial` in `ParseResult`). * @param error a function that takes the same argument as `f` and produces an error message * to explain why `f` wasn't applicable * @return a parser that succeeds if the current parser succeeds <i>and</i> `f` is applicable * to the result. If so, the result will be transformed by `f`. */ def ^? [U](f: PartialFunction[T, U], error: T => String): Parser[U] = Parser{ in => this(in).mapPartial(f, error)}.named(toString+"^?") /** A parser combinator for partial function application. * * `p ^? f` succeeds if `p` succeeds AND `f` is defined at the result of `p`; * in that case, it returns `f` applied to the result of `p`. * * @param f a partial function that will be applied to this parser's result * (see `mapPartial` in `ParseResult`). * @return a parser that succeeds if the current parser succeeds <i>and</i> `f` is applicable * to the result. If so, the result will be transformed by `f`. */ def ^? [U](f: PartialFunction[T, U]): Parser[U] = ^?(f, r => "Constructor function not defined at "+r) /** A parser combinator that parameterizes a subsequent parser with the * result of this one. * * Use this combinator when a parser depends on the result of a previous * parser. `p` should be a function that takes the result from the first * parser and returns the second parser. * * `p into fq` (with `fq` typically `{x => q}`) first applies `p`, and * then, if `p` successfully returned result `r`, applies `fq(r)` to the * rest of the input. * * ''From: G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323--343, 1992.'' * * @example {{{ * def perlRE = "m" ~> (".".r into (separator => """[^%s]*""".format(separator).r <~ separator)) * }}} * * @param fq a function that, given the result from this parser, returns * the second parser to be applied * @return a parser that succeeds if this parser succeeds (with result `x`) * and if then `fq(x)` succeeds */ def into[U](fq: T => Parser[U]): Parser[U] = flatMap(fq) // shortcuts for combinators: /** Returns `into(fq)`. */ def >>[U](fq: T => Parser[U])=into(fq) /** Returns a parser that repeatedly parses what this parser parses. * * @return rep(this) */ def * = rep(this) /** Returns a parser that repeatedly parses what this parser parses, * interleaved with the `sep` parser. The `sep` parser specifies how * the results parsed by this parser should be combined. * * @return chainl1(this, sep) */ def *[U >: T](sep: => Parser[(U, U) => U]) = chainl1(this, sep) // TODO: improve precedence? a ~ b*(",") = a ~ (b*(",")) should be true /** Returns a parser that repeatedly (at least once) parses what this parser parses. * * @return rep1(this) */ def + = rep1(this) /** Returns a parser that optionally parses what this parser parses. * * @return opt(this) */ def ? = opt(this) /** Changes the failure message produced by a parser. * * This doesn't change the behavior of a parser on neither * success nor error, just on failure. The semantics are * slightly different than those obtained by doing `| failure(msg)`, * in that the message produced by this method will always * replace the message produced, which is not guaranteed * by that idiom. * * For example, parser `p` below will always produce the * designated failure message, while `q` will not produce * it if `sign` is parsed but `number` is not. * * {{{ * def p = sign.? ~ number withFailureMessage "Number expected!" * def q = sign.? ~ number | failure("Number expected!") * }}} * * @param msg The message that will replace the default failure message. * @return A parser with the same properties and different failure message. */ def withFailureMessage(msg: String) = Parser{ in => this(in) match { case Failure(_, next) => Failure(msg, next) case other => other } } /** Changes the error message produced by a parser. * * This doesn't change the behavior of a parser on neither * success nor failure, just on error. The semantics are * slightly different than those obtained by doing `| error(msg)`, * in that the message produced by this method will always * replace the message produced, which is not guaranteed * by that idiom. * * For example, parser `p` below will always produce the * designated error message, while `q` will not produce * it if `sign` is parsed but `number` is not. * * {{{ * def p = sign.? ~ number withErrorMessage "Number expected!" * def q = sign.? ~ number | error("Number expected!") * }}} * * @param msg The message that will replace the default error message. * @return A parser with the same properties and different error message. */ def withErrorMessage(msg: String) = Parser{ in => this(in) match { case Error(_, next) => Error(msg, next) case other => other } } } /** Wrap a parser so that its failures become errors (the `|` combinator * will give up as soon as it encounters an error, on failure it simply * tries the next alternative). */ def commit[T](p: => Parser[T]) = Parser{ in => p(in) match{ case s @ Success(_, _) => s case e @ Error(_, _) => e case f @ Failure(msg, next) => Error(msg, next) } } /*trait ElemFun case class EFCons(hd: Elem => ElemFun, tl: ElemFun) extends ElemFun case class EFNil(res: Boolean) extends ElemFun*/ /** A parser matching input elements that satisfy a given predicate. * * `elem(kind, p)` succeeds if the input starts with an element `e` for which `p(e)` is true. * * @param kind The element kind, used for error messages * @param p A predicate that determines which elements match. * @return */ def elem(kind: String, p: Elem => Boolean) = acceptIf(p)(inEl => kind+" expected") /** A parser that matches only the given element `e`. * * `elem(e)` succeeds if the input starts with an element `e`. * * @param e the `Elem` that must be the next piece of input for the returned parser to succeed * @return a `Parser` that succeeds if `e` is the next available input (and returns it). */ def elem(e: Elem): Parser[Elem] = accept(e) /** A parser that matches only the given element `e`. * * The method is implicit so that elements can automatically be lifted to their parsers. * For example, when parsing `Token`s, `Identifier("new")` (which is a `Token`) can be used directly, * instead of first creating a `Parser` using `accept(Identifier("new"))`. * * @param e the `Elem` that must be the next piece of input for the returned parser to succeed * @return a `tParser` that succeeds if `e` is the next available input. */ implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)("`"+e+"' expected but " + _ + " found") /** A parser that matches only the given list of element `es`. * * `accept(es)` succeeds if the input subsequently provides the elements in the list `es`. * * @param es the list of expected elements * @return a Parser that recognizes a specified list of elements */ def accept[ES <% List[Elem]](es: ES): Parser[List[Elem]] = acceptSeq(es) /** The parser that matches an element in the domain of the partial function `f`. * * If `f` is defined on the first element in the input, `f` is applied * to it to produce this parser's result. * * Example: The parser `accept("name", {case Identifier(n) => Name(n)})` * accepts an `Identifier(n)` and returns a `Name(n)` * * @param expected a description of the kind of element this parser expects (for error messages) * @param f a partial function that determines when this parser is successful and what its output is * @return A parser that succeeds if `f` is applicable to the first element of the input, * applying `f` to it to produce the result. */ def accept[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = acceptMatch(expected, f) /** A parser matching input elements that satisfy a given predicate. * * `acceptIf(p)(el => "Unexpected "+el)` succeeds if the input starts with an element `e` for which `p(e)` is true. * * @param err A function from the received element into an error message. * @param p A predicate that determines which elements match. * @return A parser for elements satisfying p(e). */ def acceptIf(p: Elem => Boolean)(err: Elem => String): Parser[Elem] = Parser { in => if (in.atEnd) Failure("end of input", in) else if (p(in.first)) Success(in.first, in.rest) else Failure(err(in.first), in) } /** The parser that matches an element in the domain of the partial function `f`. * * If `f` is defined on the first element in the input, `f` is applied * to it to produce this parser's result. * * Example: The parser `acceptMatch("name", {case Identifier(n) => Name(n)})` * accepts an `Identifier(n)` and returns a `Name(n)` * * @param expected a description of the kind of element this parser expects (for error messages) * @param f a partial function that determines when this parser is successful and what its output is * @return A parser that succeeds if `f` is applicable to the first element of the input, * applying `f` to it to produce the result. */ def acceptMatch[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = Parser{ in => if (in.atEnd) Failure("end of input", in) else if (f.isDefinedAt(in.first)) Success(f(in.first), in.rest) else Failure(expected+" expected", in) } /** A parser that matches only the given [[scala.collection.Iterable]] collection of elements `es`. * * `acceptSeq(es)` succeeds if the input subsequently provides the elements in the iterable `es`. * * @param es the list of expected elements * @return a Parser that recognizes a specified list of elements */ def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] = es.foldRight[Parser[List[Elem]]](success(Nil)){(x, pxs) => accept(x) ~ pxs ^^ mkList} /** A parser that always fails. * * @param msg The error message describing the failure. * @return A parser that always fails with the specified error message. */ def failure(msg: String) = Parser{ in => Failure(msg, in) } /** A parser that results in an error. * * @param msg The error message describing the failure. * @return A parser that always fails with the specified error message. */ def err(msg: String) = Parser{ in => Error(msg, in) } /** A parser that always succeeds. * * @param v The result for the parser * @return A parser that always succeeds, with the given result `v` */ def success[T](v: T) = Parser{ in => Success(v, in) } /** A helper method that turns a `Parser` into one that will * print debugging information to stdout before and after * being applied. */ def log[T](p: => Parser[T])(name: String): Parser[T] = Parser{ in => println("trying "+ name +" at "+ in) val r = p(in) println(name +" --> "+ r) r } /** A parser generator for repetitions. * * `rep(p)` repeatedly uses `p` to parse the input until `p` fails * (the result is a List of the consecutive results of `p`). * * @param p a `Parser` that is to be applied successively to the input * @return A parser that returns a list of results produced by repeatedly applying `p` to the input. */ def rep[T](p: => Parser[T]): Parser[List[T]] = rep1(p) | success(List()) /** A parser generator for interleaved repetitions. * * `repsep(p, q)` repeatedly uses `p` interleaved with `q` to parse the input, until `p` fails. * (The result is a `List` of the results of `p`.) * * Example: `repsep(term, ",")` parses a comma-separated list of term's, yielding a list of these terms. * * @param p a `Parser` that is to be applied successively to the input * @param q a `Parser` that parses the elements that separate the elements parsed by `p` * @return A parser that returns a list of results produced by repeatedly applying `p` (interleaved with `q`) to the input. * The results of `p` are collected in a list. The results of `q` are discarded. */ def repsep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] = rep1sep(p, q) | success(List()) /** A parser generator for non-empty repetitions. * * `rep1(p)` repeatedly uses `p` to parse the input until `p` fails -- `p` must succeed at least * once (the result is a `List` of the consecutive results of `p`) * * @param p a `Parser` that is to be applied successively to the input * @return A parser that returns a list of results produced by repeatedly applying `p` to the input * (and that only succeeds if `p` matches at least once). */ def rep1[T](p: => Parser[T]): Parser[List[T]] = rep1(p, p) /** A parser generator for non-empty repetitions. * * `rep1(f, p)` first uses `f` (which must succeed) and then repeatedly * uses `p` to parse the input until `p` fails * (the result is a `List` of the consecutive results of `f` and `p`) * * @param first a `Parser` that parses the first piece of input * @param p0 a `Parser` that is to be applied successively to the rest of the input (if any) -- evaluated at most once, and only when necessary * @return A parser that returns a list of results produced by first applying `f` and then * repeatedly `p` to the input (it only succeeds if `f` matches). */ @migration("The `p0` call-by-name arguments is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0") def rep1[T](first: => Parser[T], p0: => Parser[T]): Parser[List[T]] = Parser { in => lazy val p = p0 // lazy argument val elems = new ListBuffer[T] def continue(in: Input): ParseResult[List[T]] = { val p0 = p // avoid repeatedly re-evaluating by-name parser @tailrec def applyp(in0: Input): ParseResult[List[T]] = p0(in0) match { case Success(x, rest) => elems += x ; applyp(rest) case e @ Error(_, _) => e // still have to propagate error case _ => Success(elems.toList, in0) } applyp(in) } first(in) match { case Success(x, rest) => elems += x ; continue(rest) case ns: NoSuccess => ns } } /** A parser generator for a specified number of repetitions. * * `repN(n, p)` uses `p` exactly `n` time to parse the input * (the result is a `List` of the `n` consecutive results of `p`). * * @param p a `Parser` that is to be applied successively to the input * @param num the exact number of times `p` must succeed * @return A parser that returns a list of results produced by repeatedly applying `p` to the input * (and that only succeeds if `p` matches exactly `n` times). */ def repN[T](num: Int, p: => Parser[T]): Parser[List[T]] = if (num == 0) success(Nil) else Parser { in => val elems = new ListBuffer[T] val p0 = p // avoid repeatedly re-evaluating by-name parser @tailrec def applyp(in0: Input): ParseResult[List[T]] = if (elems.length == num) Success(elems.toList, in0) else p0(in0) match { case Success(x, rest) => elems += x ; applyp(rest) case ns: NoSuccess => return ns } applyp(in) } /** A parser generator for non-empty repetitions. * * `rep1sep(p, q)` repeatedly applies `p` interleaved with `q` to parse the * input, until `p` fails. The parser `p` must succeed at least once. * * @param p a `Parser` that is to be applied successively to the input * @param q a `Parser` that parses the elements that separate the elements parsed by `p` * (interleaved with `q`) * @return A parser that returns a list of results produced by repeatedly applying `p` to the input * (and that only succeeds if `p` matches at least once). * The results of `p` are collected in a list. The results of `q` are discarded. */ def rep1sep[T](p : => Parser[T], q : => Parser[Any]): Parser[List[T]] = p ~ rep(q ~> p) ^^ {case x~y => x::y} /** A parser generator that, roughly, generalises the rep1sep generator so * that `q`, which parses the separator, produces a left-associative * function that combines the elements it separates. * * ''From: J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Programming, * volume 925 of Lecture Notes in Computer Science, pages 1--23. Springer, 1995.'' * * @param p a parser that parses the elements * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that * combines two elements into one */ def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T] = chainl1(p, p, q) /** A parser generator that, roughly, generalises the `rep1sep` generator * so that `q`, which parses the separator, produces a left-associative * function that combines the elements it separates. * * @param first a parser that parses the first element * @param p a parser that parses the subsequent elements * @param q a parser that parses the token(s) separating the elements, * yielding a left-associative function that combines two elements * into one */ def chainl1[T, U](first: => Parser[T], p: => Parser[U], q: => Parser[(T, U) => T]): Parser[T] = first ~ rep(q ~ p) ^^ { case x ~ xs => xs.foldLeft(x: T){case (a, f ~ b) => f(a, b)} // x's type annotation is needed to deal with changed type inference due to SI-5189 } /** A parser generator that generalises the `rep1sep` generator so that `q`, * which parses the separator, produces a right-associative function that * combines the elements it separates. Additionally, the right-most (last) * element and the left-most combining function have to be supplied. * * rep1sep(p: Parser[T], q) corresponds to chainr1(p, q ^^ cons, cons, Nil) (where val cons = (x: T, y: List[T]) => x :: y) * * @param p a parser that parses the elements * @param q a parser that parses the token(s) separating the elements, yielding a right-associative function that * combines two elements into one * @param combine the "last" (left-most) combination function to be applied * @param first the "first" (right-most) element to be combined */ def chainr1[T, U](p: => Parser[T], q: => Parser[(T, U) => U], combine: (T, U) => U, first: U): Parser[U] = p ~ rep(q ~ p) ^^ { case x ~ xs => (new ~(combine, x) :: xs).foldRight(first){case (f ~ a, b) => f(a, b)} } /** A parser generator for optional sub-phrases. * * `opt(p)` is a parser that returns `Some(x)` if `p` returns `x` and `None` if `p` fails. * * @param p A `Parser` that is tried on the input * @return a `Parser` that always succeeds: either with the result provided by `p` or * with the empty result */ def opt[T](p: => Parser[T]): Parser[Option[T]] = p ^^ (x => Some(x)) | success(None) /** Wrap a parser so that its failures and errors become success and * vice versa -- it never consumes any input. */ def not[T](p: => Parser[T]): Parser[Unit] = Parser { in => p(in) match { case Success(_, _) => Failure("Expected failure", in) case _ => Success((), in) } } /** A parser generator for guard expressions. The resulting parser will * fail or succeed just like the one given as parameter but it will not * consume any input. * * @param p a `Parser` that is to be applied to the input * @return A parser that returns success if and only if `p` succeeds but * never consumes any input */ def guard[T](p: => Parser[T]): Parser[T] = Parser { in => p(in) match{ case s@ Success(s1,_) => Success(s1, in) case e => e } } /** `positioned` decorates a parser's result with the start position of the * input it consumed. * * @param p a `Parser` whose result conforms to `Positional`. * @return A parser that has the same behaviour as `p`, but which marks its * result with the start position of the input it consumed, * if it didn't already have a position. */ def positioned[T <: Positional](p: => Parser[T]): Parser[T] = Parser { in => p(in) match { case Success(t, in1) => Success(if (t.pos == NoPosition) t setPos in.pos else t, in1) case ns: NoSuccess => ns } } /** A parser generator delimiting whole phrases (i.e. programs). * * `phrase(p)` succeeds if `p` succeeds and no input is left over after `p`. * * @param p the parser that must consume all input for the resulting parser * to succeed. * @return a parser that has the same result as `p`, but that only succeeds * if `p` consumed all the input. */ def phrase[T](p: Parser[T]) = new Parser[T] { def apply(in: Input) = lastNoSuccessVar.withValue(None) { p(in) match { case s @ Success(out, in1) => if (in1.atEnd) s else lastNoSuccessVar.value filterNot { _.next.pos < in1.pos } getOrElse Failure("end of input expected", in1) case ns => lastNoSuccessVar.value.getOrElse(ns) } } } /** Given a concatenation with a repetition (list), move the concatenated element into the list */ def mkList[T] = (_: ~[T, List[T]]) match { case x ~ xs => x :: xs } /** A wrapper over sequence of matches. * * Given `p1: Parser[A]` and `p2: Parser[B]`, a parser composed with * `p1 ~ p2` will have type `Parser[~[A, B]]`. The successful result * of the parser can be extracted from this case class. * * It also enables pattern matching, so something like this is possible: * * {{{ * def concat(p1: Parser[String], p2: Parser[String]): Parser[String] = * p1 ~ p2 ^^ { case a ~ b => a + b } * }}} */ case class ~[+a, +b](_1: a, _2: b) { override def toString = "("+ _1 +"~"+ _2 +")" } /** A parser whose `~` combinator disallows back-tracking. */ trait OnceParser[+T] extends Parser[T] { override def ~ [U](p: => Parser[U]): Parser[~[T, U]] = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~") } } }