/* NSC -- new scala compiler * Copyright 2005-2013 LAMP/EPFL * @author Iulian Dragos */ package scala.tools.nsc package backend.opt import scala.collection.{ mutable, immutable } import symtab._ /** */ abstract class DeadCodeElimination extends SubComponent { import global._ import icodes._ import icodes.opcodes._ import definitions.RuntimePackage val phaseName = "dce" /** Create a new phase */ override def newPhase(p: Phase) = new DeadCodeEliminationPhase(p) /** Dead code elimination phase. */ class DeadCodeEliminationPhase(prev: Phase) extends ICodePhase(prev) { def name = phaseName val dce = new DeadCode() override def apply(c: IClass) { if (settings.Xdce.value) dce.analyzeClass(c) } } /** closures that are instantiated at least once, after dead code elimination */ val liveClosures: mutable.Set[Symbol] = new mutable.HashSet() /** Remove dead code. */ class DeadCode { def analyzeClass(cls: IClass) { log(s"Analyzing ${cls.methods.size} methods in $cls.") cls.methods.foreach { m => this.method = m dieCodeDie(m) global.closureElimination.peephole(m) } } val rdef = new reachingDefinitions.ReachingDefinitionsAnalysis; /** Use-def chain: give the reaching definitions at the beginning of given instruction. */ var defs: immutable.Map[(BasicBlock, Int), immutable.Set[rdef.lattice.Definition]] = immutable.HashMap.empty /** Useful instructions which have not been scanned yet. */ val worklist: mutable.Set[(BasicBlock, Int)] = new mutable.LinkedHashSet /** what instructions have been marked as useful? */ val useful: mutable.Map[BasicBlock, mutable.BitSet] = perRunCaches.newMap() /** what local variables have been accessed at least once? */ var accessedLocals: List[Local] = Nil /** the current method. */ var method: IMethod = _ /** Map instructions who have a drop on some control path, to that DROP instruction. */ val dropOf: mutable.Map[(BasicBlock, Int), List[(BasicBlock, Int)]] = perRunCaches.newMap() def dieCodeDie(m: IMethod) { if (m.hasCode) { debuglog("dead code elimination on " + m); dropOf.clear() m.code.blocks.clear() accessedLocals = m.params.reverse m.code.blocks ++= linearizer.linearize(m) collectRDef(m) mark sweep(m) accessedLocals = accessedLocals.distinct val diff = m.locals diff accessedLocals if (diff.nonEmpty) { val msg = diff.map(_.sym.name)mkString(", ") log(s"Removed ${diff.size} dead locals: $msg") m.locals = accessedLocals.reverse } } } /** collect reaching definitions and initial useful instructions for this method. */ def collectRDef(m: IMethod): Unit = if (m.hasCode) { defs = immutable.HashMap.empty; worklist.clear(); useful.clear(); rdef.init(m); rdef.run; m foreachBlock { bb => useful(bb) = new mutable.BitSet(bb.size) var rd = rdef.in(bb); for (Pair(i, idx) <- bb.toList.zipWithIndex) { i match { case LOAD_LOCAL(l) => defs = defs + Pair(((bb, idx)), rd.vars) case STORE_LOCAL(_) => /* SI-4935 Check whether a module is stack top, if so mark the instruction that loaded it * (otherwise any side-effects of the module's constructor go lost). * (a) The other two cases where a module's value is stored (STORE_FIELD and STORE_ARRAY_ITEM) * are already marked (case clause below). * (b) A CALL_METHOD targeting a method `m1` where the receiver is potentially a module (case clause below) * will have the module's load marked provided `isSideEffecting(m1)`. * TODO check for purity (the ICode?) of the module's constructor (besides m1's purity). * See also https://github.com/paulp/scala/blob/topic/purity-analysis/src/compiler/scala/tools/nsc/backend/opt/DeadCodeElimination.scala */ val necessary = rdef.findDefs(bb, idx, 1) exists { p => val (bb1, idx1) = p bb1(idx1) match { case LOAD_MODULE(module) => isLoadNeeded(module) case _ => false } } if (necessary) worklist += ((bb, idx)) case RETURN(_) | JUMP(_) | CJUMP(_, _, _, _) | CZJUMP(_, _, _, _) | STORE_FIELD(_, _) | THROW(_) | LOAD_ARRAY_ITEM(_) | STORE_ARRAY_ITEM(_) | SCOPE_ENTER(_) | SCOPE_EXIT(_) | STORE_THIS(_) | LOAD_EXCEPTION(_) | SWITCH(_, _) | MONITOR_ENTER() | MONITOR_EXIT() => worklist += ((bb, idx)) case CALL_METHOD(m1, _) if isSideEffecting(m1) => worklist += ((bb, idx)); debuglog("marking " + m1) case CALL_METHOD(m1, SuperCall(_)) => worklist += ((bb, idx)) // super calls to constructor case DROP(_) => val necessary = rdef.findDefs(bb, idx, 1) exists { p => val (bb1, idx1) = p bb1(idx1) match { case CALL_METHOD(m1, _) if isSideEffecting(m1) => true case LOAD_EXCEPTION(_) | DUP(_) | LOAD_MODULE(_) => true case _ => dropOf((bb1, idx1)) = (bb,idx) :: dropOf.getOrElse((bb1, idx1), Nil) // println("DROP is innessential: " + i + " because of: " + bb1(idx1) + " at " + bb1 + ":" + idx1) false } } if (necessary) worklist += ((bb, idx)) case _ => () } rd = rdef.interpret(bb, idx, rd) } } } private def isLoadNeeded(module: Symbol): Boolean = { module.info.member(nme.CONSTRUCTOR).filter(isSideEffecting) != NoSymbol } /** Mark useful instructions. Instructions in the worklist are each inspected and their * dependencies are marked useful too, and added to the worklist. */ def mark() { // log("Starting with worklist: " + worklist) while (!worklist.isEmpty) { val (bb, idx) = worklist.iterator.next worklist -= ((bb, idx)) debuglog("Marking instr: \tBB_" + bb + ": " + idx + " " + bb(idx)) val instr = bb(idx) if (!useful(bb)(idx)) { useful(bb) += idx dropOf.get(bb, idx) foreach { for ((bb1, idx1) <- _) useful(bb1) += idx1 } instr match { case LOAD_LOCAL(l1) => for ((l2, bb1, idx1) <- defs((bb, idx)) if l1 == l2; if !useful(bb1)(idx1)) { debuglog("\tAdding " + bb1(idx1)) worklist += ((bb1, idx1)) } case nw @ NEW(REFERENCE(sym)) => assert(nw.init ne null, "null new.init at: " + bb + ": " + idx + "(" + instr + ")") worklist += findInstruction(bb, nw.init) if (inliner.isClosureClass(sym)) { liveClosures += sym } // it may be better to move static initializers from closures to // the enclosing class, to allow the optimizer to remove more closures. // right now, the only static fields in closures are created when caching // 'symbol literals. case LOAD_FIELD(sym, true) if inliner.isClosureClass(sym.owner) => log("added closure class for field " + sym) liveClosures += sym.owner case LOAD_EXCEPTION(_) => () case _ => for ((bb1, idx1) <- rdef.findDefs(bb, idx, instr.consumed) if !useful(bb1)(idx1)) { debuglog("\tAdding " + bb1(idx1)) worklist += ((bb1, idx1)) } } } } } def sweep(m: IMethod) { val compensations = computeCompensations(m) m foreachBlock { bb => // Console.println("** Sweeping block " + bb + " **") val oldInstr = bb.toList bb.open bb.clear for (Pair(i, idx) <- oldInstr.zipWithIndex) { if (useful(bb)(idx)) { // log(" " + i + " is useful") bb.emit(i, i.pos) compensations.get(bb, idx) match { case Some(is) => is foreach bb.emit case None => () } // check for accessed locals i match { case LOAD_LOCAL(l) if !l.arg => accessedLocals = l :: accessedLocals case STORE_LOCAL(l) if !l.arg => accessedLocals = l :: accessedLocals case _ => () } } else { i match { case NEW(REFERENCE(sym)) => log(s"Eliminated instantation of $sym inside $m") case _ => () } debuglog("Skipped: bb_" + bb + ": " + idx + "( " + i + ")") } } if (bb.nonEmpty) bb.close else log(s"empty block encountered in $m") } } private def computeCompensations(m: IMethod): mutable.Map[(BasicBlock, Int), List[Instruction]] = { val compensations: mutable.Map[(BasicBlock, Int), List[Instruction]] = new mutable.HashMap m foreachBlock { bb => assert(bb.closed, "Open block in computeCompensations") foreachWithIndex(bb.toList) { (i, idx) => if (!useful(bb)(idx)) { foreachWithIndex(i.consumedTypes.reverse) { (consumedType, depth) => debuglog("Finding definitions of: " + i + "\n\t" + consumedType + " at depth: " + depth) val defs = rdef.findDefs(bb, idx, 1, depth) for (d <- defs) { val (bb, idx) = d bb(idx) match { case DUP(_) if idx > 0 => bb(idx - 1) match { case nw @ NEW(_) => val init = findInstruction(bb, nw.init) log("Moving DROP to after <init> call: " + nw.init) compensations(init) = List(DROP(consumedType)) case _ => compensations(d) = List(DROP(consumedType)) } case _ => compensations(d) = List(DROP(consumedType)) } } } } } } compensations } private def withClosed[a](bb: BasicBlock)(f: => a): a = { if (bb.nonEmpty) bb.close val res = f if (bb.nonEmpty) bb.open res } private def findInstruction(bb: BasicBlock, i: Instruction): (BasicBlock, Int) = { for (b <- linearizer.linearizeAt(method, bb)) { val idx = b.toList indexWhere (_ eq i) if (idx != -1) return (b, idx) } abort("could not find init in: " + method) } private def isPure(sym: Symbol) = ( (sym.isGetter && sym.isEffectivelyFinal && !sym.isLazy) || (sym.isPrimaryConstructor && (sym.enclosingPackage == RuntimePackage || inliner.isClosureClass(sym.owner))) ) /** Is 'sym' a side-effecting method? TODO: proper analysis. */ private def isSideEffecting(sym: Symbol) = !isPure(sym) } /* DeadCode */ }