/* __ *\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL ** ** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\___/_/ |_/____/_/ | | ** ** |/ ** \* */ package scala.collection package immutable import mutable.{ Builder, ListBuffer } import generic._ /** `NumericRange` is a more generic version of the * `Range` class which works with arbitrary types. * It must be supplied with an `Integral` implementation of the * range type. * * Factories for likely types include `Range.BigInt`, `Range.Long`, * and `Range.BigDecimal`. `Range.Int` exists for completeness, but * the `Int`-based `scala.Range` should be more performant. * * {{{ * val r1 = new Range(0, 100, 1) * val veryBig = Int.MaxValue.toLong + 1 * val r2 = Range.Long(veryBig, veryBig + 100, 1) * assert(r1 sameElements r2.map(_ - veryBig)) * }}} * * TODO: Now the specialization exists there is no clear reason to have * separate classes for Range/NumericRange. Investigate and consolidate. * * @author Paul Phillips * @version 2.8 * @define Coll `NumericRange` * @define coll numeric range * @define mayNotTerminateInf * @define willNotTerminateInf */ abstract class NumericRange[T] (val start: T, val end: T, val step: T, val isInclusive: Boolean) (implicit num: Integral[T]) extends AbstractSeq[T] with IndexedSeq[T] with Serializable { /** Note that NumericRange must be invariant so that constructs * such as "1L to 10 by 5" do not infer the range type as AnyVal. */ import num._ // See comment in Range for why this must be lazy. private lazy val numRangeElements: Int = NumericRange.count(start, end, step, isInclusive) override def length = numRangeElements override def isEmpty = length == 0 override lazy val last: T = if (length == 0) Nil.last else locationAfterN(length - 1) /** Create a new range with the start and end values of this range and * a new `step`. */ def by(newStep: T): NumericRange[T] = copy(start, end, newStep) /** Create a copy of this range. */ def copy(start: T, end: T, step: T): NumericRange[T] override def foreach[U](f: T => U) { var count = 0 var current = start while (count < length) { f(current) current += step count += 1 } } // TODO: these private methods are straight copies from Range, duplicated // to guard against any (most likely illusory) performance drop. They should // be eliminated one way or another. // Counts how many elements from the start meet the given test. private def skipCount(p: T => Boolean): Int = { var current = start var counted = 0 while (counted < length && p(current)) { counted += 1 current += step } counted } // Tests whether a number is within the endpoints, without testing // whether it is a member of the sequence (i.e. when step > 1.) private def isWithinBoundaries(elem: T) = !isEmpty && ( (step > zero && start <= elem && elem <= last ) || (step < zero && last <= elem && elem <= start) ) // Methods like apply throw exceptions on invalid n, but methods like take/drop // are forgiving: therefore the checks are with the methods. private def locationAfterN(n: Int): T = start + (step * fromInt(n)) // When one drops everything. Can't ever have unchecked operations // like "end + 1" or "end - 1" because ranges involving Int.{ MinValue, MaxValue } // will overflow. This creates an exclusive range where start == end // based on the given value. private def newEmptyRange(value: T) = NumericRange(value, value, step) final override def take(n: Int): NumericRange[T] = ( if (n <= 0 || length == 0) newEmptyRange(start) else if (n >= length) this else new NumericRange.Inclusive(start, locationAfterN(n - 1), step) ) final override def drop(n: Int): NumericRange[T] = ( if (n <= 0 || length == 0) this else if (n >= length) newEmptyRange(end) else copy(locationAfterN(n), end, step) ) def apply(idx: Int): T = { if (idx < 0 || idx >= length) throw new IndexOutOfBoundsException(idx.toString) else locationAfterN(idx) } import NumericRange.defaultOrdering override def min[T1 >: T](implicit ord: Ordering[T1]): T = if (ord eq defaultOrdering(num)) { if (num.signum(step) > 0) start else last } else super.min(ord) override def max[T1 >: T](implicit ord: Ordering[T1]): T = if (ord eq defaultOrdering(num)) { if (num.signum(step) > 0) last else start } else super.max(ord) // Motivated by the desire for Double ranges with BigDecimal precision, // we need some way to map a Range and get another Range. This can't be // done in any fully general way because Ranges are not arbitrary // sequences but step-valued, so we have a custom method only we can call // which we promise to use responsibly. // // The point of it all is that // // 0.0 to 1.0 by 0.1 // // should result in // // NumericRange[Double](0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) // // and not // // NumericRange[Double](0.0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6000000000000001, 0.7000000000000001, 0.8, 0.9) // // or perhaps more importantly, // // (0.1 to 0.3 by 0.1 contains 0.3) == true // private[immutable] def mapRange[A](fm: T => A)(implicit unum: Integral[A]): NumericRange[A] = { val self = this // XXX This may be incomplete. new NumericRange[A](fm(start), fm(end), fm(step), isInclusive) { def copy(start: A, end: A, step: A): NumericRange[A] = if (isInclusive) NumericRange.inclusive(start, end, step) else NumericRange(start, end, step) private lazy val underlyingRange: NumericRange[T] = self override def foreach[U](f: A => U) { underlyingRange foreach (x => f(fm(x))) } override def isEmpty = underlyingRange.isEmpty override def apply(idx: Int): A = fm(underlyingRange(idx)) override def containsTyped(el: A) = underlyingRange exists (x => fm(x) == el) } } // a well-typed contains method. def containsTyped(x: T): Boolean = isWithinBoundaries(x) && (((x - start) % step) == zero) override def contains(x: Any): Boolean = try containsTyped(x.asInstanceOf[T]) catch { case _: ClassCastException => false } final override def sum[B >: T](implicit num: Numeric[B]): B = { import num.Ops if (isEmpty) this.num fromInt 0 else if (numRangeElements == 1) head else ((this.num fromInt numRangeElements) * (head + last) / (this.num fromInt 2)) } override lazy val hashCode = super.hashCode() override def equals(other: Any) = other match { case x: NumericRange[_] => (x canEqual this) && (length == x.length) && ( (length == 0) || // all empty sequences are equal (start == x.start && last == x.last) // same length and same endpoints implies equality ) case _ => super.equals(other) } override def toString() = { val endStr = if (length > Range.MAX_PRINT) ", ... )" else ")" take(Range.MAX_PRINT).mkString("NumericRange(", ", ", endStr) } } /** A companion object for numeric ranges. */ object NumericRange { /** Calculates the number of elements in a range given start, end, step, and * whether or not it is inclusive. Throws an exception if step == 0 or * the number of elements exceeds the maximum Int. */ def count[T](start: T, end: T, step: T, isInclusive: Boolean)(implicit num: Integral[T]): Int = { val zero = num.zero val upward = num.lt(start, end) val posStep = num.gt(step, zero) if (step == zero) throw new IllegalArgumentException("step cannot be 0.") else if (start == end) if (isInclusive) 1 else 0 else if (upward != posStep) 0 else { val diff = num.minus(end, start) val jumps = num.toLong(num.quot(diff, step)) val remainder = num.rem(diff, step) val longCount = jumps + ( if (!isInclusive && zero == remainder) 0 else 1 ) /** The edge cases keep coming. Since e.g. * Long.MaxValue + 1 == Long.MinValue * we do some more improbable seeming checks lest * overflow turn up as an empty range. */ // The second condition contradicts an empty result. val isOverflow = longCount == 0 && num.lt(num.plus(start, step), end) == upward if (longCount > scala.Int.MaxValue || longCount < 0L || isOverflow) { val word = if (isInclusive) "to" else "until" val descr = List(start, word, end, "by", step) mkString " " throw new IllegalArgumentException(descr + ": seqs cannot contain more than Int.MaxValue elements.") } longCount.toInt } } class Inclusive[T](start: T, end: T, step: T)(implicit num: Integral[T]) extends NumericRange(start, end, step, true) { def copy(start: T, end: T, step: T): Inclusive[T] = NumericRange.inclusive(start, end, step) def exclusive: Exclusive[T] = NumericRange(start, end, step) } class Exclusive[T](start: T, end: T, step: T)(implicit num: Integral[T]) extends NumericRange(start, end, step, false) { def copy(start: T, end: T, step: T): Exclusive[T] = NumericRange(start, end, step) def inclusive: Inclusive[T] = NumericRange.inclusive(start, end, step) } def apply[T](start: T, end: T, step: T)(implicit num: Integral[T]): Exclusive[T] = new Exclusive(start, end, step) def inclusive[T](start: T, end: T, step: T)(implicit num: Integral[T]): Inclusive[T] = new Inclusive(start, end, step) private[collection] val defaultOrdering = Map[Numeric[_], Ordering[_]]( Numeric.BigIntIsIntegral -> Ordering.BigInt, Numeric.IntIsIntegral -> Ordering.Int, Numeric.ShortIsIntegral -> Ordering.Short, Numeric.ByteIsIntegral -> Ordering.Byte, Numeric.CharIsIntegral -> Ordering.Char, Numeric.LongIsIntegral -> Ordering.Long, Numeric.FloatAsIfIntegral -> Ordering.Float, Numeric.DoubleAsIfIntegral -> Ordering.Double, Numeric.BigDecimalAsIfIntegral -> Ordering.BigDecimal ) }