/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.reflect
package internal

import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import util.Statistics
import Flags._
import scala.annotation.tailrec
import scala.reflect.io.AbstractFile

trait Symbols extends api.Symbols { self: SymbolTable =>
  import definitions._
  import SymbolsStats._

  protected var ids = 0

  val emptySymbolArray = new Array[Symbol](0)

  protected def nextId() = { ids += 1; ids }

  /** Used for deciding in the IDE whether we can interrupt the compiler */
  //protected var activeLocks = 0

  /** Used for debugging only */
  //protected var lockedSyms = scala.collection.immutable.Set[Symbol]()

  /** Used to keep track of the recursion depth on locked symbols */
  private var recursionTable = immutable.Map.empty[Symbol, Int]

  private var nextexid = 0
  protected def freshExistentialName(suffix: String) = {
    nextexid += 1
    newTypeName("_" + nextexid + suffix)
  }

  // Set the fields which point companions at one another.  Returns the module.
  def connectModuleToClass(m: ModuleSymbol, moduleClass: ClassSymbol): ModuleSymbol = {
    moduleClass.sourceModule = m
    m setModuleClass moduleClass
    m
  }

  /** Create a new free term.  Its owner is NoSymbol.
   */
  def newFreeTermSymbol(name: TermName, value: => Any, flags: Long = 0L, origin: String): FreeTermSymbol =
    new FreeTermSymbol(name, value, origin) initFlags flags

  /** Create a new free type.  Its owner is NoSymbol.
   */
  def newFreeTypeSymbol(name: TypeName, flags: Long = 0L, origin: String): FreeTypeSymbol =
    new FreeTypeSymbol(name, origin) initFlags flags

  /** Determines whether the given information request should trigger the given symbol's completer.
   *  See comments to `Symbol.needsInitialize` for details.
   */
  protected def shouldTriggerCompleter(symbol: Symbol, completer: Type, isFlagRelated: Boolean, mask: Long) =
    completer match {
      case null => false
      case _: FlagAgnosticCompleter => !isFlagRelated
      case _ => abort(s"unsupported completer: $completer of class ${if (completer != null) completer.getClass else null} for symbol ${symbol.fullName}")
    }

  /** The original owner of a class. Used by the backend to generate
   *  EnclosingMethod attributes.
   */
  val originalOwner = perRunCaches.newMap[Symbol, Symbol]()

  abstract class SymbolContextApiImpl extends SymbolContextApi {
    this: Symbol =>

    def isExistential: Boolean = this.isExistentiallyBound
    def isParamWithDefault: Boolean = this.hasDefault
    def isByNameParam: Boolean = this.isValueParameter && (this hasFlag BYNAMEPARAM)
    def isImplementationArtifact: Boolean = (this hasFlag BRIDGE) || (this hasFlag VBRIDGE) || (this hasFlag ARTIFACT)
    def isJava: Boolean = isJavaDefined
    def isVal: Boolean = isTerm && !isModule && !isMethod && !isMutable
    def isVar: Boolean = isTerm && !isModule && !isMethod && isMutable

    def newNestedSymbol(name: Name, pos: Position, newFlags: Long, isClass: Boolean): Symbol = name match {
      case n: TermName => newTermSymbol(n, pos, newFlags)
      case n: TypeName => if (isClass) newClassSymbol(n, pos, newFlags) else newNonClassSymbol(n, pos, newFlags)
    }

    def knownDirectSubclasses             = children
    def baseClasses                       = info.baseClasses
    def module                            = sourceModule
    def thisPrefix: Type                  = thisType
    def selfType: Type                    = typeOfThis
    def typeSignature: Type               = { fullyInitializeSymbol(this); info }
    def typeSignatureIn(site: Type): Type = { fullyInitializeSymbol(this); site memberInfo this }

    def toType: Type = tpe
    def toTypeIn(site: Type): Type = site.memberType(this)
    def toTypeConstructor: Type = typeConstructor
    def setTypeSignature(tpe: Type): this.type = { setInfo(tpe); this }
    def setAnnotations(annots: AnnotationInfo*): this.type = { setAnnotations(annots.toList); this }

    def getter: Symbol = getter(owner)
    def setter: Symbol = setter(owner)
  }

  /** The class for all symbols */
  abstract class Symbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: Name)
          extends SymbolContextApiImpl
             with HasFlags
             with Annotatable[Symbol]
             with Attachable {

    type AccessBoundaryType = Symbol
    type AnnotationType     = AnnotationInfo

    // TODO - don't allow names to be renamed in this unstructured a fashion.
    // Rename as little as possible.  Enforce invariants on all renames.
    type TypeOfClonedSymbol >: Null <: Symbol { type NameType = Symbol.this.NameType }

    // Abstract here so TypeSymbol and TermSymbol can have a private[this] field
    // with the proper specific type.
    def rawname: NameType
    def name: NameType
    def name_=(n: Name): Unit = {
      if (shouldLogAtThisPhase) {
        val msg = s"Renaming $fullLocationString to $n"
        if (isSpecialized) debuglog(msg) else log(msg)
      }
    }
    def asNameType(n: Name): NameType

    private[this] var _rawowner = initOwner // Syncnote: need not be protected, as only assignment happens in owner_=, which is not exposed to api
    private[this] var _rawflags: Long = _

    def rawowner = _rawowner
    def rawflags = _rawflags

    rawatt = initPos

    val id = nextId() // identity displayed when -uniqid
    //assert(id != 3390, initName)

    private[this] var _validTo: Period = NoPeriod

    if (traceSymbolActivity)
      traceSymbols.recordNewSymbol(this)

    def validTo = _validTo
    def validTo_=(x: Period) { _validTo = x}

    def setName(name: Name): this.type = { this.name = asNameType(name) ; this }

    // Update the surrounding scopes
    protected[this] def changeNameInOwners(name: Name) {
      if (owner.isClass) {
        var ifs = owner.infos
        while (ifs != null) {
          ifs.info.decls.rehash(this, name)
          ifs = ifs.prev
        }
      }
    }

    def rawFlagString(mask: Long): String = calculateFlagString(rawflags & mask)
    def rawFlagString: String             = rawFlagString(flagMask)
    def debugFlagString: String           = flagString(AllFlags)

    /** String representation of symbol's variance */
    def varianceString: String =
      if (variance == 1) "+"
      else if (variance == -1) "-"
      else ""

    override def flagMask =
      if (settings.debug.value && !isAbstractType) AllFlags
      else if (owner.isRefinementClass) ExplicitFlags & ~OVERRIDE
      else ExplicitFlags

    // make the error message more googlable
    def flagsExplanationString =
      if (isGADTSkolem) " (this is a GADT skolem)"
      else ""

    def shortSymbolClass = getClass.getName.split('.').last.stripPrefix("Symbols$")
    def symbolCreationString: String = (
      "%s%25s | %-40s | %s".format(
        if (settings.uniqid.value) "%06d | ".format(id) else "",
        shortSymbolClass,
        name.decode + " in " + owner,
        rawFlagString
      )
    )

// ------ creators -------------------------------------------------------------------

    final def newValue(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, newFlags)
    final def newVariable(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, MUTABLE | newFlags)
    final def newValueParameter(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, PARAM | newFlags)

    /** Create local dummy for template (owner of local blocks) */
    final def newLocalDummy(pos: Position): TermSymbol =
      newTermSymbol(nme.localDummyName(this), pos) setInfo NoType
    final def newMethod(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): MethodSymbol =
      createMethodSymbol(name, pos, METHOD | newFlags)
    final def newMethodSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): MethodSymbol =
      createMethodSymbol(name, pos, METHOD | newFlags)
    final def newLabel(name: TermName, pos: Position = NoPosition): MethodSymbol =
      newMethod(name, pos, LABEL)

    /** Propagates ConstrFlags (JAVA, specifically) from owner to constructor. */
    final def newConstructor(pos: Position, newFlags: Long = 0L): MethodSymbol =
      newMethod(nme.CONSTRUCTOR, pos, getFlag(ConstrFlags) | newFlags)

    /** Static constructor with info set. */
    def newStaticConstructor(pos: Position): MethodSymbol =
      newConstructor(pos, STATIC) setInfo UnitClass.tpe

    /** Instance constructor with info set. */
    def newClassConstructor(pos: Position): MethodSymbol =
      newConstructor(pos) setInfo MethodType(Nil, this.tpe)

    def newLinkedModule(clazz: Symbol, newFlags: Long = 0L): ModuleSymbol = {
      val m = newModuleSymbol(clazz.name.toTermName, clazz.pos, MODULE | newFlags)
      connectModuleToClass(m, clazz.asInstanceOf[ClassSymbol])
    }
    final def newModule(name: TermName, pos: Position = NoPosition, newFlags0: Long = 0L): ModuleSymbol = {
      val newFlags = newFlags0 | MODULE
      val m = newModuleSymbol(name, pos, newFlags)
      val clazz = newModuleClass(name.toTypeName, pos, newFlags & ModuleToClassFlags)
      connectModuleToClass(m, clazz)
    }

    final def newPackage(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleSymbol = {
      assert(name == nme.ROOT || isPackageClass, this)
      newModule(name, pos, PackageFlags | newFlags)
    }

    final def newThisSym(name: TermName = nme.this_, pos: Position = NoPosition): TermSymbol =
      newTermSymbol(name, pos, SYNTHETIC)

    final def newImport(pos: Position): TermSymbol =
      newTermSymbol(nme.IMPORT, pos)

    final def newModuleSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleSymbol =
      newTermSymbol(name, pos, newFlags).asInstanceOf[ModuleSymbol]

    final def newModuleAndClassSymbol(name: Name, pos: Position, flags0: FlagSet): (ModuleSymbol, ClassSymbol) = {
      val flags = flags0 | MODULE
      val m = newModuleSymbol(name, pos, flags)
      val c = newModuleClass(name.toTypeName, pos, flags & ModuleToClassFlags)
      connectModuleToClass(m, c)
      (m, c)
    }

    final def newPackageSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleSymbol =
      newTermSymbol(name, pos, newFlags).asInstanceOf[ModuleSymbol]

    final def newModuleClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleClassSymbol =
      newClassSymbol(name, pos, newFlags).asInstanceOf[ModuleClassSymbol]

    final def newTypeSkolemSymbol(name: TypeName, origin: AnyRef, pos: Position = NoPosition, newFlags: Long = 0L): TypeSkolem =
      createTypeSkolemSymbol(name, origin, pos, newFlags)

    /** @param pre   type relative to which alternatives are seen.
     *  for instance:
     *  class C[T] {
     *    def m(x: T): T
     *    def m'(): T
     *  }
     *  val v: C[Int]
     *
     *  Then v.m  has symbol TermSymbol(flags = {OVERLOADED},
     *                                  tpe = OverloadedType(C[Int], List(m, m')))
     *  You recover the type of m doing a
     *
     *    m.tpe.asSeenFrom(pre, C)   (generally, owner of m, which is C here).
     *
     *  or:
     *
     *    pre.memberType(m)
     */
    final def newOverloaded(pre: Type, alternatives: List[Symbol]): TermSymbol = (
      newTermSymbol(alternatives.head.name.toTermName, alternatives.head.pos, OVERLOADED)
        setInfo OverloadedType(pre, alternatives)
    )

    final def newErrorValue(name: TermName): TermSymbol =
      newTermSymbol(name, pos, SYNTHETIC | IS_ERROR) setInfo ErrorType

    /** Symbol of a type definition  type T = ...
     */
    final def newAliasType(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): AliasTypeSymbol =
      createAliasTypeSymbol(name, pos, newFlags)

    /** Symbol of an abstract type  type T >: ... <: ...
     */
    final def newAbstractType(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): AbstractTypeSymbol =
      createAbstractTypeSymbol(name, pos, DEFERRED | newFlags)

    /** Symbol of a type parameter
     */
    final def newTypeParameter(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newAbstractType(name, pos, PARAM | newFlags)

// is defined in SymbolCreations
//    final def newTypeSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
//      (if ((newFlags & DEFERRED) != 0) new AbstractTypeSymbol(this, pos, name)
//       else new AbstractTypeSymbol(this, pos, name)) setFlag newFlags

    /** Symbol of an existential type T forSome { ... }
     */
    final def newExistential(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newAbstractType(name, pos, EXISTENTIAL | newFlags)

    private def freshNamer: () => TermName = {
      var cnt = 0
      () => { cnt += 1; nme.syntheticParamName(cnt) }
    }

    /** Synthetic value parameters when parameter symbols are not available
     */
    final def newSyntheticValueParamss(argtypess: List[List[Type]]): List[List[TermSymbol]] =
      argtypess map (xs => newSyntheticValueParams(xs, freshNamer))

    /** Synthetic value parameters when parameter symbols are not available.
     *  Calling this method multiple times will re-use the same parameter names.
     */
    final def newSyntheticValueParams(argtypes: List[Type]): List[TermSymbol] =
      newSyntheticValueParams(argtypes, freshNamer)

    final def newSyntheticValueParams(argtypes: List[Type], freshName: () => TermName): List[TermSymbol] =
      argtypes map (tp => newSyntheticValueParam(tp, freshName()))

    /** Synthetic value parameter when parameter symbol is not available.
     *  Calling this method multiple times will re-use the same parameter name.
     */
    final def newSyntheticValueParam(argtype: Type, name: TermName = nme.syntheticParamName(1)): TermSymbol =
      newValueParameter(name, owner.pos.focus, SYNTHETIC) setInfo argtype

    def newSyntheticTypeParam(): TypeSymbol                             = newSyntheticTypeParam("T0", 0L)
    def newSyntheticTypeParam(name: String, newFlags: Long): TypeSymbol = newTypeParameter(newTypeName(name), NoPosition, newFlags) setInfo TypeBounds.empty
    def newSyntheticTypeParams(num: Int): List[TypeSymbol]              = (0 until num).toList map (n => newSyntheticTypeParam("T" + n, 0L))

    /** Create a new existential type skolem with this symbol its owner,
     *  based on the given symbol and origin.
     */
    def newExistentialSkolem(basis: Symbol, origin: AnyRef): TypeSkolem = {
      val skolem = newTypeSkolemSymbol(basis.name.toTypeName, origin, basis.pos, (basis.flags | EXISTENTIAL) & ~PARAM)
      skolem setInfo (basis.info cloneInfo skolem)
    }

    // don't test directly -- use isGADTSkolem
    // used to single out a gadt skolem symbol in deskolemizeGADT
    // gadtskolems are created in adaptConstrPattern and removed at the end of typedCase
    final protected[Symbols] def GADT_SKOLEM_FLAGS = CASEACCESSOR | SYNTHETIC

    // flags set up to maintain TypeSkolem's invariant: origin.isInstanceOf[Symbol] == !hasFlag(EXISTENTIAL)
    // GADT_SKOLEM_FLAGS (== CASEACCESSOR | SYNTHETIC) used to single this symbol out in deskolemizeGADT
    // TODO: it would be better to allocate a new bit in the flag long for GADTSkolem rather than OR'ing together CASEACCESSOR | SYNTHETIC
    def newGADTSkolem(name: TypeName, origin: Symbol, info: Type): TypeSkolem =
      newTypeSkolemSymbol(name, origin, origin.pos, origin.flags & ~(EXISTENTIAL | PARAM) | GADT_SKOLEM_FLAGS) setInfo info

    final def freshExistential(suffix: String): TypeSymbol =
      newExistential(freshExistentialName(suffix), pos)

    /** Type skolems are type parameters ''seen from the inside''
     *  Assuming a polymorphic method m[T], its type is a PolyType which has a TypeParameter
     *  with name `T` in its typeParams list. While type checking the parameters, result type and
     *  body of the method, there's a local copy of `T` which is a TypeSkolem.
     */
    final def newTypeSkolem: TypeSkolem =
      owner.newTypeSkolemSymbol(name.toTypeName, this, pos, flags)

    final def newClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol =
      newClassSymbol(name, pos, newFlags)

    /** A new class with its info set to a ClassInfoType with given scope and parents. */
    def newClassWithInfo(name: TypeName, parents: List[Type], scope: Scope, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      val clazz = newClass(name, pos, newFlags)
      clazz setInfo ClassInfoType(parents, scope, clazz)
    }
    final def newErrorClass(name: TypeName): ClassSymbol =
      newClassWithInfo(name, Nil, new ErrorScope(this), pos, SYNTHETIC | IS_ERROR)

    final def newModuleClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleClassSymbol =
      newModuleClassSymbol(name, pos, newFlags | MODULE)

    final def newAnonymousFunctionClass(pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol =
      newClassSymbol(tpnme.ANON_FUN_NAME, pos, FINAL | SYNTHETIC | newFlags)

    final def newAnonymousFunctionValue(pos: Position, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(nme.ANON_FUN_NAME, pos, SYNTHETIC | newFlags) setInfo NoType

    def newImplClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      newClassSymbol(name, pos, newFlags | IMPLCLASS)
    }

    /** Refinement types P { val x: String; type T <: Number }
     *  also have symbols, they are refinementClasses
     */
    final def newRefinementClass(pos: Position): RefinementClassSymbol =
      createRefinementClassSymbol(pos, 0L)

    /** Create a new getter for current symbol (which must be a field)
     */
    final def newGetter: MethodSymbol = (
      owner.newMethod(nme.getterName(name.toTermName), NoPosition, getterFlags(flags))
        setPrivateWithin privateWithin
        setInfo MethodType(Nil, tpe)
    )

    final def newErrorSymbol(name: Name): Symbol = name match {
      case x: TypeName  => newErrorClass(x)
      case x: TermName  => newErrorValue(x)
    }

    /** Creates a placeholder symbol for when a name is encountered during
     *  unpickling for which there is no corresponding classfile.  This defers
     *  failure to the point when that name is used for something, which is
     *  often to the point of never.
     */
    def newStubSymbol(name: Name, missingMessage: String): Symbol = name match {
      case n: TypeName  => new StubClassSymbol(this, n, missingMessage)
      case _            => new StubTermSymbol(this, name.toTermName, missingMessage)
    }

    @deprecated("Use the other signature", "2.10.0")
    def newClass(pos: Position, name: TypeName): Symbol        = newClass(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newModuleClass(pos: Position, name: TypeName): Symbol  = newModuleClass(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newLabel(pos: Position, name: TermName): MethodSymbol  = newLabel(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newValue(pos: Position, name: TermName): TermSymbol    = newTermSymbol(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newAliasType(pos: Position, name: TypeName): Symbol    = newAliasType(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newAbstractType(pos: Position, name: TypeName): Symbol = newAbstractType(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newExistential(pos: Position, name: TypeName): Symbol  = newExistential(name, pos)
    @deprecated("Use the other signature", "2.10.0")
    def newMethod(pos: Position, name: TermName): MethodSymbol = newMethod(name, pos)

// ----- locking and unlocking ------------------------------------------------------

    // True if the symbol is unlocked.
    // True if the symbol is locked but still below the allowed recursion depth.
    // False otherwise
    private[scala] def lockOK: Boolean = {
      ((_rawflags & LOCKED) == 0L) ||
      ((settings.Yrecursion.value != 0) &&
       (recursionTable get this match {
         case Some(n) => (n <= settings.Yrecursion.value)
         case None => true }))
    }

    // Lock a symbol, using the handler if the recursion depth becomes too great.
    private[scala] def lock(handler: => Unit): Boolean = {
      if ((_rawflags & LOCKED) != 0L) {
        if (settings.Yrecursion.value != 0) {
          recursionTable get this match {
            case Some(n) =>
              if (n > settings.Yrecursion.value) {
                handler
                false
              } else {
                recursionTable += (this -> (n + 1))
                true
              }
            case None =>
              recursionTable += (this -> 1)
              true
          }
        } else { handler; false }
      } else {
        _rawflags |= LOCKED
        true
//        activeLocks += 1
//        lockedSyms += this
      }
    }

    // Unlock a symbol
    private[scala] def unlock() = {
      if ((_rawflags & LOCKED) != 0L) {
//        activeLocks -= 1
//        lockedSyms -= this
        _rawflags &= ~LOCKED
        if (settings.Yrecursion.value != 0)
          recursionTable -= this
      }
    }

// ----- tests ----------------------------------------------------------------------

    def isAliasType    = false
    def isAbstractType = false
    def isSkolem       = false

    /** A Type, but not a Class. */
    def isNonClassType = false

    /** The bottom classes are Nothing and Null, found in Definitions. */
    def isBottomClass  = false

    /** These are all tests for varieties of ClassSymbol, which has these subclasses:
     *  - ModuleClassSymbol
     *  - RefinementClassSymbol
     *  - PackageClassSymbol (extends ModuleClassSymbol)
     */
    def isAbstractClass         = false
    def isAnonOrRefinementClass = false
    def isAnonymousClass        = false
    def isCaseClass             = false
    def isConcreteClass         = false
    def isImplClass             = false   // the implementation class of a trait
    def isJavaInterface         = false
    def isNumericValueClass     = false
    def isPrimitiveValueClass   = false
    def isRefinementClass       = false
    override def isTrait        = false

    /** Qualities of Types, always false for TermSymbols.
     */
    def isContravariant         = false
    def isCovariant             = false
    def isExistentialQuantified = false
    def isExistentialSkolem     = false
    def isExistentiallyBound    = false
    def isGADTSkolem            = false
    def isTypeParameter         = false
    def isTypeParameterOrSkolem = false
    def isTypeSkolem            = false
    def isTypeMacro             = false
    def isInvariant             = !isCovariant && !isContravariant

    /** Qualities of Terms, always false for TypeSymbols.
     */
    def isAccessor          = false
    def isBridge            = false
    def isCapturedVariable  = false
    def isClassConstructor  = false
    def isConstructor       = false
    def isEarlyInitialized  = false
    def isGetter            = false
    def isLocalDummy        = false
    def isMixinConstructor  = false
    def isOverloaded        = false
    def isSetter            = false
    def isSetterParameter   = false
    def isValue             = false
    def isValueParameter    = false
    def isVariable          = false
    override def hasDefault = false
    def isTermMacro         = false

    /** Qualities of MethodSymbols, always false for TypeSymbols
     *  and other TermSymbols.
     */
    def isCaseAccessorMethod = false
    def isLiftedMethod       = false
    def isSourceMethod       = false
    def isVarargsMethod      = false
    override def isLabel     = false

    /** Package/package object tests */
    def isPackageClass         = false
    def isPackageObject        = false
    def isPackageObjectClass   = false
    def isPackageObjectOrClass = isPackageObject || isPackageObjectClass
    def isModuleOrModuleClass  = isModule || isModuleClass

    /** Overridden in custom objects in Definitions */
    def isRoot              = false
    def isRootPackage       = false
    def isRootSymbol        = false   // RootPackage and RootClass.  TODO: also NoSymbol.
    def isEmptyPackage      = false
    def isEmptyPackageClass = false

    /** Is this symbol an effective root for fullname string?
     */
    def isEffectiveRoot = false

    final def isLazyAccessor       = isLazy && lazyAccessor != NoSymbol
    final def isOverridableMember  = !(isClass || isEffectivelyFinal) && (this ne NoSymbol) && owner.isClass

    /** Does this symbol denote a wrapper created by the repl? */
    final def isInterpreterWrapper = (
         (this hasFlag MODULE)
      && owner.isPackageClass
      && nme.isReplWrapperName(name)
    )
    final def getFlag(mask: Long): Long = {
      if (!isCompilerUniverse && needsInitialize(isFlagRelated = true, mask = mask)) initialize
      flags & mask
    }
    /** Does symbol have ANY flag in `mask` set? */
    final def hasFlag(mask: Long): Boolean = {
      if (!isCompilerUniverse && needsInitialize(isFlagRelated = true, mask = mask)) initialize
      (flags & mask) != 0
    }
    /** Does symbol have ALL the flags in `mask` set? */
    final def hasAllFlags(mask: Long): Boolean = {
      if (!isCompilerUniverse && needsInitialize(isFlagRelated = true, mask = mask)) initialize
      (flags & mask) == mask
    }

    def setFlag(mask: Long): this.type   = { _rawflags |= mask ; this }
    def resetFlag(mask: Long): this.type = { _rawflags &= ~mask ; this }
    def resetFlags() { rawflags &= TopLevelCreationFlags }

    /** Default implementation calls the generic string function, which
     *  will print overloaded flags as <flag1/flag2/flag3>.  Subclasses
     *  of Symbol refine.
     */
    override def resolveOverloadedFlag(flag: Long): String = Flags.flagToString(flag)

    /** Set the symbol's flags to the given value, asserting
     *  that the previous value was 0.
     */
    def initFlags(mask: Long): this.type = {
      assert(rawflags == 0L, symbolCreationString)
      _rawflags = mask
      this
    }

    final def flags: Long = {
      if (Statistics.hotEnabled) Statistics.incCounter(flagsCount)
      val fs = _rawflags & phase.flagMask
      (fs | ((fs & LateFlags) >>> LateShift)) & ~(fs >>> AntiShift)
    }
    def flags_=(fs: Long) = _rawflags = fs
    def rawflags_=(x: Long) { _rawflags = x }

    final def hasGetter = isTerm && nme.isLocalName(name)

    final def isInitializedToDefault = !isType && hasAllFlags(DEFAULTINIT | ACCESSOR)
    final def isStaticModule = isModule && isStatic && !isMethod
    final def isThisSym = isTerm && owner.thisSym == this
    final def isError = hasFlag(IS_ERROR)
    final def isErroneous = isError || isInitialized && tpe.isErroneous

    def isHigherOrderTypeParameter = owner.isTypeParameterOrSkolem

    // class C extends D( { class E { ... } ... } ). Here, E is a class local to a constructor
    def isClassLocalToConstructor = false

    final def isDerivedValueClass =
      isClass && !hasFlag(PACKAGE | TRAIT) &&
      info.firstParent.typeSymbol == AnyValClass && !isPrimitiveValueClass

    final def isMethodWithExtension =
      isMethod && owner.isDerivedValueClass && !isParamAccessor && !isConstructor && !hasFlag(SUPERACCESSOR) && !isTermMacro

    final def isAnonymousFunction = isSynthetic && (name containsName tpnme.ANON_FUN_NAME)
    final def isDefinedInPackage  = effectiveOwner.isPackageClass
    final def needsFlatClasses    = phase.flatClasses && rawowner != NoSymbol && !rawowner.isPackageClass

    /** change name by appending $$<fully-qualified-name-of-class `base`>
     *  Do the same for any accessed symbols or setters/getters.
     *  Implementation in TermSymbol.
     */
    def expandName(base: Symbol) { }

    // In java.lang, Predef, or scala package/package object
    def isInDefaultNamespace = UnqualifiedOwners(effectiveOwner)

    /** The owner, skipping package objects.
     */
    def effectiveOwner = owner.skipPackageObject

    /** If this is a package object or its implementing class, its owner: otherwise this.
     */
    def skipPackageObject: Symbol = this

    /** If this is a constructor, its owner: otherwise this.
     */
    final def skipConstructor: Symbol = if (isConstructor) owner else this

    /** Conditions where we omit the prefix when printing a symbol, to avoid
     *  unpleasantries like Predef.String, $iw.$iw.Foo and <empty>.Bippy.
     */
    final def isOmittablePrefix = /*!settings.debug.value &&*/ (
         UnqualifiedOwners(skipPackageObject)
      || isEmptyPrefix
    )
    def isEmptyPrefix = (
         isEffectiveRoot                      // has no prefix for real, <empty> or <root>
      || isAnonOrRefinementClass              // has uninteresting <anon> or <refinement> prefix
      || nme.isReplWrapperName(name)          // has ugly $iw. prefix (doesn't call isInterpreterWrapper due to nesting)
    )
    def isFBounded = info match {
      case TypeBounds(_, _) => info.baseTypeSeq exists (_ contains this)
      case _                => false
    }

    /** Is symbol a monomorphic type?
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters in later phases.
     */
    final def isMonomorphicType =
      isType && {
        val info = originalInfo
        info.isComplete && !info.isHigherKinded
      }

    def isStrictFP          = hasAnnotation(ScalaStrictFPAttr) || (enclClass hasAnnotation ScalaStrictFPAttr)
    def isSerializable      = (
         info.baseClasses.exists(p => p == SerializableClass || p == JavaSerializableClass)
      || hasAnnotation(SerializableAttr) // last part can be removed, @serializable annotation is deprecated
    )
    def hasBridgeAnnotation = hasAnnotation(BridgeClass)
    def isDeprecated        = hasAnnotation(DeprecatedAttr)
    def deprecationMessage  = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 0)
    def deprecationVersion  = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 1)
    def deprecatedParamName = getAnnotation(DeprecatedNameAttr) flatMap (_ symbolArg 0)
    def hasDeprecatedInheritanceAnnotation
                            = hasAnnotation(DeprecatedInheritanceAttr)
    def deprecatedInheritanceMessage
                            = getAnnotation(DeprecatedInheritanceAttr) flatMap (_ stringArg 0)
    def deprecatedInheritanceVersion
                            = getAnnotation(DeprecatedInheritanceAttr) flatMap (_ stringArg 1)
    def hasDeprecatedOverridingAnnotation
                            = hasAnnotation(DeprecatedOverridingAttr)
    def deprecatedOverridingMessage
                            = getAnnotation(DeprecatedOverridingAttr) flatMap (_ stringArg 0)
    def deprecatedOverridingVersion
                            = getAnnotation(DeprecatedOverridingAttr) flatMap (_ stringArg 1)

    // !!! when annotation arguments are not literal strings, but any sort of
    // assembly of strings, there is a fair chance they will turn up here not as
    // Literal(const) but some arbitrary AST.  However nothing in the compiler
    // prevents someone from writing a @migration annotation with a calculated
    // string.  So this needs attention.  For now the fact that migration is
    // private[scala] ought to provide enough protection.
    def hasMigrationAnnotation = hasAnnotation(MigrationAnnotationClass)
    def migrationMessage    = getAnnotation(MigrationAnnotationClass) flatMap { _.stringArg(0) }
    def migrationVersion    = getAnnotation(MigrationAnnotationClass) flatMap { _.stringArg(1) }
    def elisionLevel        = getAnnotation(ElidableMethodClass) flatMap { _.intArg(0) }
    def implicitNotFoundMsg = getAnnotation(ImplicitNotFoundClass) flatMap { _.stringArg(0) }

    /** Is this symbol an accessor method for outer? */
    final def isOuterAccessor = {
      hasFlag(STABLE | ARTIFACT) &&
      originalName == nme.OUTER
    }

    /** Is this symbol an accessor method for outer? */
    final def isOuterField = {
      hasFlag(ARTIFACT) &&
      originalName == nme.OUTER_LOCAL
    }

    /** Does this symbol denote a stable value? */
    def isStable = false

    /** Does this symbol denote the primary constructor of its enclosing class? */
    final def isPrimaryConstructor =
      isConstructor && owner.primaryConstructor == this

    /** Does this symbol denote an auxiliary constructor of its enclosing class? */
    final def isAuxiliaryConstructor =
      isConstructor && !isPrimaryConstructor

    /** Is this symbol a synthetic apply or unapply method in a companion object of a case class? */
    final def isCaseApplyOrUnapply =
      isMethod && isCase && isSynthetic

    /** Is this symbol a trait which needs an implementation class? */
    final def needsImplClass = (
         isTrait
      && (!isInterface || hasFlag(lateINTERFACE))
      && !isImplClass
    )

    /** Is this a symbol which exists only in the implementation class, not in its trait? */
    final def isImplOnly = isPrivate || (
       (owner.isTrait || owner.isImplClass) && (
            hasAllFlags(LIFTED | MODULE | METHOD)
         || isConstructor
         || hasFlag(notPRIVATE | LIFTED) && !hasFlag(ACCESSOR | SUPERACCESSOR | MODULE)
       )
    )
    final def isModuleVar = hasFlag(MODULEVAR)

    /** Is this symbol static (i.e. with no outer instance)?
     *  Q: When exactly is a sym marked as STATIC?
     *  A: If it's a member of a toplevel object, or of an object contained in a toplevel object, or any number of levels deep.
     *  http://groups.google.com/group/scala-internals/browse_thread/thread/d385bcd60b08faf6
     */
    def isStatic = (this hasFlag STATIC) || owner.isStaticOwner

    /** Is this symbol a static constructor? */
    final def isStaticConstructor: Boolean =
      isStaticMember && isClassConstructor

    /** Is this symbol a static member of its class? (i.e. needs to be implemented as a Java static?) */
    final def isStaticMember: Boolean =
      hasFlag(STATIC) || owner.isImplClass

    /** Does this symbol denote a class that defines static symbols? */
    final def isStaticOwner: Boolean =
      isPackageClass || isModuleClass && isStatic

    def isTopLevelModule = hasFlag(MODULE) && owner.isPackageClass

    /** Is this symbol effectively final? I.e, it cannot be overridden */
    final def isEffectivelyFinal: Boolean = (
         (this hasFlag FINAL | PACKAGE)
      || isModuleOrModuleClass && (owner.isPackageClass || !settings.overrideObjects.value)
      || isTerm && (
             isPrivate
          || isLocal
          || owner.isClass && owner.isEffectivelyFinal
      )
    )

    /** Is this symbol locally defined? I.e. not accessed from outside `this` instance */
    final def isLocal: Boolean = owner.isTerm

    /** Is this symbol a constant? */
    final def isConstant: Boolean = isStable && isConstantType(tpe.resultType)

    /** Is this class nested in another class or module (not a package)? */
    def isNestedClass = false

    /** Is this class locally defined?
     *  A class is local, if
     *   - it is anonymous, or
     *   - its owner is a value
     *   - it is defined within a local class
     */
    def isLocalClass = false

    def isStableClass = false

/* code for fixing nested objects
    override final def isModuleClass: Boolean =
      super.isModuleClass && !isExpandedModuleClass
*/
    /** Is this class or type defined as a structural refinement type?
     */
    final def isStructuralRefinement: Boolean =
      (isClass || isType || isModule) && info.normalize/*.underlying*/.isStructuralRefinement

    /** Is this a term symbol only defined in a refinement (so that it needs
     *  to be accessed by reflection)?
     */
    def isOnlyRefinementMember: Boolean =
       isTerm && // type members are not affected
       owner.isRefinementClass && // owner must be a refinement class
       (owner.info decl name) == this && // symbol must be explicitly declared in the refinement (not synthesized from glb)
       allOverriddenSymbols.isEmpty && // symbol must not override a symbol in a base class
       !isConstant // symbol must not be a constant. Question: Can we exclude @inline methods as well?

    final def isStructuralRefinementMember = owner.isStructuralRefinement && isPossibleInRefinement && isPublic
    final def isPossibleInRefinement       = !isConstructor && !isOverridingSymbol

    /** Is this symbol a member of class `clazz`? */
    def isMemberOf(clazz: Symbol) =
      clazz.info.member(name).alternatives contains this

    /** A a member of class `base` is incomplete if
     *  (1) it is declared deferred or
     *  (2) it is abstract override and its super symbol in `base` is
     *      nonexistent or incomplete.
     *
     *  @param base ...
     *  @return     ...
     */
    final def isIncompleteIn(base: Symbol): Boolean =
      this.isDeferred ||
      (this hasFlag ABSOVERRIDE) && {
        val supersym = superSymbol(base)
        supersym == NoSymbol || supersym.isIncompleteIn(base)
      }

    // Does not always work if the rawInfo is a SourcefileLoader, see comment
    // in "def coreClassesFirst" in Global.
    def exists = !owner.isPackageClass || { rawInfo.load(this); rawInfo != NoType }

    final def isInitialized: Boolean =
      validTo != NoPeriod

    /** Can this symbol be loaded by a reflective mirror?
     *
     *  Scalac relies on `ScalaSignature' annotation to retain symbols across compilation runs.
     *  Such annotations (also called "pickles") are applied on top-level classes and include information
     *  about all symbols reachable from the annotee. However, local symbols (e.g. classes or definitions local to a block)
     *  are typically unreachable and information about them gets lost.
     *
     *  This method is useful for macro writers who wish to save certain ASTs to be used at runtime.
     *  With `isLocatable' it's possible to check whether a tree can be retained as is, or it needs special treatment.
     */
    final def isLocatable: Boolean = {
      if (this == NoSymbol) return false
      if (isRoot || isRootPackage) return true

      if (!owner.isLocatable) return false
      if (owner.isTerm) return false
      if (isLocalDummy) return false

      if (isAliasType) return true
      if (isType && isNonClassType) return false
      if (isRefinementClass) return false
      return true
    }

    /** The variance of this symbol as an integer */
    final def variance: Int =
      if (isCovariant) 1
      else if (isContravariant) -1
      else 0

    /** The sequence number of this parameter symbol among all type
     *  and value parameters of symbol's owner. -1 if symbol does not
     *  appear among the parameters of its owner.
     */
    def paramPos: Int = {
      def searchIn(tpe: Type, base: Int): Int = {
        def searchList(params: List[Symbol], fallback: Type): Int = {
          val idx = params indexOf this
          if (idx >= 0) idx + base
          else searchIn(fallback, base + params.length)
        }
        tpe match {
          case PolyType(tparams, res) => searchList(tparams, res)
          case MethodType(params, res) => searchList(params, res)
          case _ => -1
        }
      }
      searchIn(owner.info, 0)
    }

// ------ owner attribute --------------------------------------------------------------

    def owner: Symbol = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      rawowner
    }

    // TODO - don't allow the owner to be changed without checking invariants, at least
    // when under some flag. Define per-phase invariants for owner/owned relationships,
    // e.g. after flatten all classes are owned by package classes, there are lots and
    // lots of these to be declared (or more realistically, discovered.)
    def owner_=(owner: Symbol) {
      // don't keep the original owner in presentation compiler runs
      // (the map will grow indefinitely, and the only use case is the
      // backend).
      if (!forInteractive) {
        if (originalOwner contains this) ()
        else originalOwner(this) = rawowner
      }
      assert(isCompilerUniverse, "owner_= is not thread-safe; cannot be run in reflexive code")
      if (traceSymbolActivity)
        traceSymbols.recordNewSymbolOwner(this, owner)
      _rawowner = owner
    }

    def ownerChain: List[Symbol] = this :: owner.ownerChain
    def originalOwnerChain: List[Symbol] = this :: originalOwner.getOrElse(this, rawowner).originalOwnerChain

    // Non-classes skip self and return rest of owner chain; overridden in ClassSymbol.
    def enclClassChain: List[Symbol] = owner.enclClassChain

    def ownersIterator: Iterator[Symbol] = new Iterator[Symbol] {
      private var current = Symbol.this
      def hasNext = current ne NoSymbol
      def next = { val r = current; current = current.owner; r }
    }

    /** Same as `ownerChain contains sym` but more efficient, and
     *  with a twist for refinement classes (see RefinementClassSymbol.)
     */
    def hasTransOwner(sym: Symbol): Boolean = {
      var o = this
      while ((o ne sym) && (o ne NoSymbol)) o = o.owner
      (o eq sym)
    }

// ------ name attribute --------------------------------------------------------------

    /** If this symbol has an expanded name, its original name, otherwise its name itself.
     *  @see expandName
     */
    def originalName: Name = nme.originalName(nme.dropLocalSuffix(name))

    /** The name of the symbol before decoding, e.g. `\$eq\$eq` instead of `==`.
     */
    def encodedName: String = name.toString

    /** The decoded name of the symbol, e.g. `==` instead of `\$eq\$eq`.
     */
    def decodedName: String = nme.dropLocalSuffix(name).decode

    private def addModuleSuffix(n: Name): Name =
      if (needsModuleSuffix) n append nme.MODULE_SUFFIX_STRING else n

    def moduleSuffix: String = (
      if (needsModuleSuffix) nme.MODULE_SUFFIX_STRING
      else ""
    )
    /** Whether this symbol needs nme.MODULE_SUFFIX_STRING (aka $) appended on the java platform.
     */
    def needsModuleSuffix = (
         hasModuleFlag
      && !isMethod
      && !isImplClass
      && !isJavaDefined
    )
    /** These should be moved somewhere like JavaPlatform.
     */
    def javaSimpleName: Name = addModuleSuffix(nme.dropLocalSuffix(simpleName))
    def javaBinaryName: Name = addModuleSuffix(fullNameInternal('/'))
    def javaClassName: String  = addModuleSuffix(fullNameInternal('.')).toString

    /** The encoded full path name of this symbol, where outer names and inner names
     *  are separated by `separator` characters.
     *  Never translates expansions of operators back to operator symbol.
     *  Never adds id.
     *  Drops package objects.
     */
    final def fullName(separator: Char): String = fullNameAsName(separator).toString

    /** Doesn't drop package objects, for those situations (e.g. classloading)
     *  where the true path is needed.
     */
    private def fullNameInternal(separator: Char): Name = (
      if (isRoot || isRootPackage || this == NoSymbol) name
      else if (owner.isEffectiveRoot) name
      else ((effectiveOwner.enclClass.fullNameAsName(separator) append separator): Name) append name
    )

    def fullNameAsName(separator: Char): Name = nme.dropLocalSuffix(fullNameInternal(separator))

    /** The encoded full path name of this symbol, where outer names and inner names
     *  are separated by periods.
     */
    final def fullName: String = fullName('.')

    /**
     *  Symbol creation implementations.
     */

    protected def createAbstractTypeSymbol(name: TypeName, pos: Position, newFlags: Long): AbstractTypeSymbol =
      new AbstractTypeSymbol(this, pos, name) initFlags newFlags

    protected def createAliasTypeSymbol(name: TypeName, pos: Position, newFlags: Long): AliasTypeSymbol =
      new AliasTypeSymbol(this, pos, name) initFlags newFlags

    protected def createTypeSkolemSymbol(name: TypeName, origin: AnyRef, pos: Position, newFlags: Long): TypeSkolem =
      new TypeSkolem(this, pos, name, origin) initFlags newFlags

    protected def createClassSymbol(name: TypeName, pos: Position, newFlags: Long): ClassSymbol =
      new ClassSymbol(this, pos, name) initFlags newFlags

    protected def createModuleClassSymbol(name: TypeName, pos: Position, newFlags: Long): ModuleClassSymbol =
      new ModuleClassSymbol(this, pos, name) initFlags newFlags

    protected def createPackageClassSymbol(name: TypeName, pos: Position, newFlags: Long): PackageClassSymbol =
      new PackageClassSymbol(this, pos, name) initFlags newFlags

    protected def createRefinementClassSymbol(pos: Position, newFlags: Long): RefinementClassSymbol =
      new RefinementClassSymbol(this, pos) initFlags newFlags

    protected def createPackageObjectClassSymbol(pos: Position, newFlags: Long): PackageObjectClassSymbol =
      new PackageObjectClassSymbol(this, pos) initFlags newFlags

    protected def createImplClassSymbol(name: TypeName, pos: Position, newFlags: Long): ClassSymbol =
      new ClassSymbol(this, pos, name) with ImplClassSymbol initFlags newFlags

    protected def createTermSymbol(name: TermName, pos: Position, newFlags: Long): TermSymbol =
      new TermSymbol(this, pos, name) initFlags newFlags

    protected def createMethodSymbol(name: TermName, pos: Position, newFlags: Long): MethodSymbol =
      new MethodSymbol(this, pos, name) initFlags newFlags

    protected def createModuleSymbol(name: TermName, pos: Position, newFlags: Long): ModuleSymbol =
      new ModuleSymbol(this, pos, name) initFlags newFlags

    protected def createPackageSymbol(name: TermName, pos: Position, newFlags: Long): ModuleSymbol =
      new ModuleSymbol(this, pos, name) initFlags newFlags

    protected def createValueParameterSymbol(name: TermName, pos: Position, newFlags: Long): TermSymbol =
      new TermSymbol(this, pos, name) initFlags newFlags

    protected def createValueMemberSymbol(name: TermName, pos: Position, newFlags: Long): TermSymbol =
      new TermSymbol(this, pos, name) initFlags newFlags

    final def newTermSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol = {
      if ((newFlags & METHOD) != 0)
        createMethodSymbol(name, pos, newFlags)
      else if ((newFlags & PACKAGE) != 0)
        createPackageSymbol(name, pos, newFlags | PackageFlags)
      else if ((newFlags & MODULE) != 0)
        createModuleSymbol(name, pos, newFlags)
      else if ((newFlags & PARAM) != 0)
        createValueParameterSymbol(name, pos, newFlags)
      else
        createValueMemberSymbol(name, pos, newFlags)
    }

    final def newClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      if (name == tpnme.REFINE_CLASS_NAME)
        createRefinementClassSymbol(pos, newFlags)
      else if ((newFlags & PACKAGE) != 0)
        createPackageClassSymbol(name, pos, newFlags | PackageFlags)
      else if (name == tpnme.PACKAGE)
        createPackageObjectClassSymbol(pos, newFlags)
      else if ((newFlags & MODULE) != 0)
        createModuleClassSymbol(name, pos, newFlags)
      else if ((newFlags & IMPLCLASS) != 0)
        createImplClassSymbol(name, pos, newFlags)
      else
        createClassSymbol(name, pos, newFlags)
    }

    final def newNonClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol = {
      if ((newFlags & DEFERRED) != 0)
        createAbstractTypeSymbol(name, pos, newFlags)
      else
        createAliasTypeSymbol(name, pos, newFlags)
    }

    def newTypeSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newNonClassSymbol(name, pos, newFlags)

    /** The class or term up to which this symbol is accessible,
     *  or RootClass if it is public.  As java protected statics are
     *  otherwise completely inaccessible in scala, they are treated
     *  as public.
     */
    def accessBoundary(base: Symbol): Symbol = {
      if (hasFlag(PRIVATE) || isLocal) owner
      else if (hasAllFlags(PROTECTED | STATIC | JAVA)) enclosingRootClass
      else if (hasAccessBoundary && !phase.erasedTypes) privateWithin
      else if (hasFlag(PROTECTED)) base
      else enclosingRootClass
    }

    def isLessAccessibleThan(other: Symbol): Boolean = {
      val tb = this.accessBoundary(owner)
      val ob1 = other.accessBoundary(owner)
      val ob2 = ob1.linkedClassOfClass
      var o = tb
      while (o != NoSymbol && o != ob1 && o != ob2) {
        o = o.owner
      }
      o != NoSymbol && o != tb
    }

    /** See comment in HasFlags for how privateWithin combines with flags.
     */
    private[this] var _privateWithin: Symbol = _
    def privateWithin = {
      if (!isCompilerUniverse && needsInitialize(isFlagRelated = false, mask = 0)) initialize
      _privateWithin
    }
    def privateWithin_=(sym: Symbol) { _privateWithin = sym }
    def setPrivateWithin(sym: Symbol): this.type = { privateWithin_=(sym) ; this }

    /** Does symbol have a private or protected qualifier set? */
    final def hasAccessBoundary = (privateWithin != null) && (privateWithin != NoSymbol)

// ------ info and type -------------------------------------------------------------------

    private[Symbols] var infos: TypeHistory = null
    def originalInfo = {
      if (infos eq null) null
      else {
        var is = infos
        while (is.prev ne null) { is = is.prev }
        is.info
      }
    }

    /** Get type. The type of a symbol is:
     *  for a type symbol, the type corresponding to the symbol itself,
     *    @M you should use tpeHK for a type symbol with type parameters if
     *       the kind of the type need not be *, as tpe introduces dummy arguments
     *       to generate a type of kind *
     *  for a term symbol, its usual type.
     *  See the tpe/tpeHK overrides in TypeSymbol for more.
     */
    def tpe: Type = info
    def tpeHK: Type = tpe

    /** Get type info associated with symbol at current phase, after
     *  ensuring that symbol is initialized (i.e. type is completed).
     */
    def info: Type = try {
      var cnt = 0
      while (validTo == NoPeriod) {
        //if (settings.debug.value) System.out.println("completing " + this);//DEBUG
        assert(infos ne null, this.name)
        assert(infos.prev eq null, this.name)
        val tp = infos.info
        //if (settings.debug.value) System.out.println("completing " + this.rawname + tp.getClass());//debug

        if ((_rawflags & LOCKED) != 0L) { // rolled out once for performance
          lock {
            setInfo(ErrorType)
            throw CyclicReference(this, tp)
          }
        } else {
          _rawflags |= LOCKED
//          activeLocks += 1
 //         lockedSyms += this
        }
        val current = phase
        try {
          phase = phaseOf(infos.validFrom)
          tp.complete(this)
        } finally {
          unlock()
          phase = current
        }
        cnt += 1
        // allow for two completions:
        //   one: sourceCompleter to LazyType, two: LazyType to completed type
        if (cnt == 3) abort("no progress in completing " + this + ":" + tp)
      }
      rawInfo
    }
    catch {
      case ex: CyclicReference =>
        debugwarn("... hit cycle trying to complete " + this.fullLocationString)
        throw ex
    }

    def info_=(info: Type) {
      assert(info ne null)
      infos = TypeHistory(currentPeriod, info, null)
      unlock()
      _validTo = if (info.isComplete) currentPeriod else NoPeriod
    }

    /** Set initial info. */
    def setInfo(info: Type): this.type                      = { info_=(info); this }
    /** Modifies this symbol's info in place. */
    def modifyInfo(f: Type => Type): this.type              = setInfo(f(info))
    /** Substitute second list of symbols for first in current info. */
    def substInfo(syms0: List[Symbol], syms1: List[Symbol]): this.type =
      if (syms0.isEmpty) this
      else modifyInfo(_.substSym(syms0, syms1))

    def setInfoOwnerAdjusted(info: Type): this.type = setInfo(info atOwner this)

    /** Set the info and enter this symbol into the owner's scope. */
    def setInfoAndEnter(info: Type): this.type = {
      setInfo(info)
      owner.info.decls enter this
      this
    }

    /** Set new info valid from start of this phase. */
    def updateInfo(info: Type): Symbol = {
      val pid = phaseId(infos.validFrom)
      assert(pid <= phase.id, (pid, phase.id))
      if (pid == phase.id) infos = infos.prev
      infos = TypeHistory(currentPeriod, info, infos)
      _validTo = if (info.isComplete) currentPeriod else NoPeriod
      this
    }

    def hasRawInfo: Boolean = infos ne null
    def hasCompleteInfo = hasRawInfo && rawInfo.isComplete

    /** Return info without checking for initialization or completing */
    def rawInfo: Type = {
      var infos = this.infos
      assert(infos != null)
      val curPeriod = currentPeriod
      val curPid = phaseId(curPeriod)

      if (validTo != NoPeriod) {
        // skip any infos that concern later phases
        while (curPid < phaseId(infos.validFrom) && infos.prev != null)
          infos = infos.prev

        if (validTo < curPeriod) {
          // adapt any infos that come from previous runs
          val current = phase
          try {
            infos = adaptInfos(infos)

            //assert(runId(validTo) == currentRunId, name)
            //assert(runId(infos.validFrom) == currentRunId, name)

            if (validTo < curPeriod) {
              var itr = infoTransformers.nextFrom(phaseId(validTo))
              infoTransformers = itr; // caching optimization
              while (itr.pid != NoPhase.id && itr.pid < current.id) {
                phase = phaseWithId(itr.pid)
                val info1 = itr.transform(this, infos.info)
                if (info1 ne infos.info) {
                  infos = TypeHistory(currentPeriod + 1, info1, infos)
                  this.infos = infos
                }
                _validTo = currentPeriod + 1 // to enable reads from same symbol during info-transform
                itr = itr.next
              }
              _validTo = if (itr.pid == NoPhase.id) curPeriod
                         else period(currentRunId, itr.pid)
            }
          } finally {
            phase = current
          }
        }
      }
      infos.info
    }

    // adapt to new run in fsc.
    private def adaptInfos(infos: TypeHistory): TypeHistory = {
      assert(isCompilerUniverse)
      if (infos == null || runId(infos.validFrom) == currentRunId) {
        infos
      } else {
        val prev1 = adaptInfos(infos.prev)
        if (prev1 ne infos.prev) prev1
        else {
          val pid = phaseId(infos.validFrom)

          _validTo = period(currentRunId, pid)
          phase   = phaseWithId(pid)

          val info1 = (
            if (isPackageClass) infos.info
            else adaptToNewRunMap(infos.info)
          )
          if (info1 eq infos.info) {
            infos.validFrom = validTo
            infos
          } else {
            this.infos = TypeHistory(validTo, info1, prev1)
            this.infos
          }
        }
      }
    }

    /** Raises a `MissingRequirementError` if this symbol is a `StubSymbol` */
    def failIfStub() {}

    /** Initialize the symbol */
    final def initialize: this.type = {
      if (!isInitialized) info
      this
    }

    /** Called when the programmer requests information that might require initialization of the underlying symbol.
     *
     *  `isFlagRelated` and `mask` describe the nature of this information.
     *  isFlagRelated = true means that the programmer needs particular bits in flags.
     *  isFlagRelated = false means that the request is unrelated to flags (annotations or privateWithin).
     *
     *  In our current architecture, symbols for top-level classes and modules
     *  are created as dummies. Package symbols just call newClass(name) or newModule(name) and
     *  consider their job done.
     *
     *  In order for such a dummy to provide meaningful info (e.g. a list of its members),
     *  it needs to go through unpickling. Unpickling is a process of reading Scala metadata
     *  from ScalaSignature annotations and assigning it to symbols and types.
     *
     *  A single unpickling session takes a top-level class or module, parses the ScalaSignature annotation
     *  and then reads metadata for the unpicklee, its companion (if any) and all their members recursively
     *  (i.e. the pickle not only contains info about directly nested classes/modules, but also about
     *  classes/modules nested into those and so on).
     *
     *  Unpickling is triggered automatically whenever typeSignature (info in compiler parlance) is called.
     *  This happens because package symbols assign completer thunks to the dummies they create.
     *  Therefore metadata loading happens lazily and transparently.
     *
     *  Almost transparently. Unfortunately metadata isn't limited to just signatures (i.e. lists of members).
     *  It also includes flags (which determine e.g. whether a class is sealed or not), annotations and privateWithin.
     *  This gives rise to unpleasant effects like in SI-6277, when a flag test called on an uninitialize symbol
     *  produces incorrect results.
     *
     *  One might think that the solution is simple: automatically call the completer whenever one needs
     *  flags, annotations and privateWithin - just like it's done for typeSignature. Unfortunately, this
     *  leads to weird crashes in scalac, and currently we can't attempt to fix the core of the compiler
     *  risk stability a few weeks before the final release.
     *
     *  However we do need to fix this for runtime reflection, since it's not something we'd like to
     *  expose to reflection users. Therefore a proposed solution is to check whether we're in a
     *  runtime reflection universe and if yes then to commence initialization.
     */
    protected def needsInitialize(isFlagRelated: Boolean, mask: Long) =
      !isInitialized && (flags & LOCKED) == 0 && shouldTriggerCompleter(this, if (infos ne null) infos.info else null, isFlagRelated, mask)

    /** Was symbol's type updated during given phase? */
    final def isUpdatedAt(pid: Phase#Id): Boolean = {
      assert(isCompilerUniverse)
      var infos = this.infos
      while ((infos ne null) && phaseId(infos.validFrom) != pid + 1) infos = infos.prev
      infos ne null
    }

    /** Was symbol's type updated during given phase? */
    final def hasTypeAt(pid: Phase#Id): Boolean = {
      assert(isCompilerUniverse)
      var infos = this.infos
      while ((infos ne null) && phaseId(infos.validFrom) > pid) infos = infos.prev
      infos ne null
    }

    /** Modify term symbol's type so that a raw type C is converted to an existential C[_]
     *
     * This is done in checkAccessible and overriding checks in refchecks
     * We can't do this on class loading because it would result in infinite cycles.
     */
    final def cookJavaRawInfo() {
      if (hasFlag(TRIEDCOOKING)) return else setFlag(TRIEDCOOKING) // only try once...
      val oldInfo = info
      doCookJavaRawInfo()
    }

    protected def doCookJavaRawInfo(): Unit

    /** The type constructor of a symbol is:
     *  For a type symbol, the type corresponding to the symbol itself,
     *  excluding parameters.
     *  Not applicable for term symbols.
     */
    def typeConstructor: Type =
      abort("typeConstructor inapplicable for " + this)

    /** The logic approximately boils down to finding the most recent phase
     *  which immediately follows any of parser, namer, typer, or erasure.
     *  In effect that means this will return one of:
     *
     *    - packageobjects (follows namer)
     *    - superaccessors (follows typer)
     *    - lazyvals       (follows erasure)
     *    - null
     */
    private def unsafeTypeParamPhase = {
      var ph = phase
      while (ph.prev.keepsTypeParams)
        ph = ph.prev

      ph
    }
    /** The type parameters of this symbol, without ensuring type completion.
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters later.
     */
    def unsafeTypeParams: List[Symbol] =
      if (isMonomorphicType) Nil
      else atPhase(unsafeTypeParamPhase)(rawInfo.typeParams)

    /** The type parameters of this symbol.
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters later.
     */
    def typeParams: List[Symbol] =
      if (isMonomorphicType) Nil
      else {
        // analogously to the "info" getter, here we allow for two completions:
        //   one: sourceCompleter to LazyType, two: LazyType to completed type
        if (validTo == NoPeriod)
          atPhase(phaseOf(infos.validFrom))(rawInfo load this)
        if (validTo == NoPeriod)
          atPhase(phaseOf(infos.validFrom))(rawInfo load this)

        rawInfo.typeParams
      }

    /** The value parameter sections of this symbol.
     */
    def paramss: List[List[Symbol]] = info.paramss

    /** The least proper supertype of a class; includes all parent types
     *  and refinement where needed. You need to compute that in a situation like this:
     *  {
     *    class C extends P { ... }
     *    new C
     *  }
     */
    def classBound: Type = {
      val tp = refinedType(info.parents, owner)
      // SI-4589 refinedType only creates a new refinement class symbol before erasure; afterwards
      //         the first parent class is returned, to which we must not add members.
      if (!phase.erasedTypes) {
        val thistp = tp.typeSymbol.thisType
        val oldsymbuf = new ListBuffer[Symbol]
        val newsymbuf = new ListBuffer[Symbol]
        for (sym <- info.decls) {
          // todo: what about public references to private symbols?
          if (sym.isPublic && !sym.isConstructor) {
            oldsymbuf += sym
            newsymbuf += (
              if (sym.isClass)
                tp.typeSymbol.newAbstractType(sym.name.toTypeName, sym.pos).setInfo(sym.existentialBound)
              else
                sym.cloneSymbol(tp.typeSymbol))
          }
        }
        val oldsyms = oldsymbuf.toList
        val newsyms = newsymbuf.toList
        for (sym <- newsyms) {
          addMember(thistp, tp, sym modifyInfo (_ substThisAndSym(this, thistp, oldsyms, newsyms)))
        }
      }
      tp
    }

    /** If we quantify existentially over this symbol,
     *  the bound of the type variable that stands for it
     *  pre: symbol is a term, a class, or an abstract type (no alias type allowed)
     */
    def existentialBound: Type

    /** Reset symbol to initial state
     */
    def reset(completer: Type): this.type = {
      resetFlags()
      infos = null
      _validTo = NoPeriod
      //limit = NoPhase.id
      setInfo(completer)
    }

    /**
     * Adds the interface scala.Serializable to the parents of a ClassInfoType.
     * Note that the tree also has to be updated accordingly.
     */
    def makeSerializable() {
      info match {
        case ci @ ClassInfoType(_, _, _) =>
          setInfo(ci.copy(parents = ci.parents :+ SerializableClass.tpe))
        case i =>
          abort("Only ClassInfoTypes can be made serializable: "+ i)
      }
    }

// ----- setters implemented in selected subclasses -------------------------------------

    def typeOfThis_=(tp: Type)       { throw new UnsupportedOperationException("typeOfThis_= inapplicable for " + this) }
    def sourceModule_=(sym: Symbol)  { throw new UnsupportedOperationException("sourceModule_= inapplicable for " + this) }
    def addChild(sym: Symbol)        { throw new UnsupportedOperationException("addChild inapplicable for " + this) }

// ----- annotations ------------------------------------------------------------

    // null is a marker that they still need to be obtained.
    private[this] var _annotations: List[AnnotationInfo] = Nil

    def annotationsString = if (annotations.isEmpty) "" else annotations.mkString("(", ", ", ")")

    /** After the typer phase (before, look at the definition's Modifiers), contains
     *  the annotations attached to member a definition (class, method, type, field).
     */
    def annotations: List[AnnotationInfo] = {
      if (!isCompilerUniverse && needsInitialize(isFlagRelated = false, mask = 0)) initialize
      _annotations
    }

    def setAnnotations(annots: List[AnnotationInfo]): this.type = {
      _annotations = annots
      this
    }

    def withAnnotations(annots: List[AnnotationInfo]): this.type =
      setAnnotations(annots ::: annotations)

    def withoutAnnotations: this.type =
      setAnnotations(Nil)

    def filterAnnotations(p: AnnotationInfo => Boolean): this.type =
      setAnnotations(annotations filter p)

    def addAnnotation(annot: AnnotationInfo): this.type =
      setAnnotations(annot :: annotations)

    // Convenience for the overwhelmingly common case
    def addAnnotation(sym: Symbol, args: Tree*): this.type =
      addAnnotation(AnnotationInfo(sym.tpe, args.toList, Nil))

// ------ comparisons ----------------------------------------------------------------

    /** A total ordering between symbols that refines the class
     *  inheritance graph (i.e. subclass.isLess(superclass) always holds).
     *  the ordering is given by: (_.isType, -_.baseTypeSeq.length) for type symbols, followed by `id`.
     */
    final def isLess(that: Symbol): Boolean = {
      def baseTypeSeqLength(sym: Symbol) =
        if (sym.isAbstractType) 1 + sym.info.bounds.hi.baseTypeSeq.length
        else sym.info.baseTypeSeq.length
      if (this.isType)
        (that.isType &&
         { val diff = baseTypeSeqLength(this) - baseTypeSeqLength(that)
           diff > 0 || diff == 0 && this.id < that.id })
      else
        that.isType || this.id < that.id
    }

    /** A partial ordering between symbols.
     *  (this isNestedIn that) holds iff this symbol is defined within
     *  a class or method defining that symbol
     */
    final def isNestedIn(that: Symbol): Boolean =
      owner == that || owner != NoSymbol && (owner isNestedIn that)

    /** Is this class symbol a subclass of that symbol,
     *  and is this class symbol also different from Null or Nothing? */
    def isNonBottomSubClass(that: Symbol): Boolean = false

    /** Overridden in NullClass and NothingClass for custom behavior.
     */
    def isSubClass(that: Symbol) = isNonBottomSubClass(that)

    final def isNumericSubClass(that: Symbol): Boolean =
      definitions.isNumericSubClass(this, that)

    final def isWeakSubClass(that: Symbol) =
      isSubClass(that) || isNumericSubClass(that)

// ------ overloaded alternatives ------------------------------------------------------

    def alternatives: List[Symbol] =
      if (isOverloaded) info.asInstanceOf[OverloadedType].alternatives
      else this :: Nil

    def filter(cond: Symbol => Boolean): Symbol =
      if (isOverloaded) {
        val alts = alternatives
        val alts1 = alts filter cond
        if (alts1 eq alts) this
        else if (alts1.isEmpty) NoSymbol
        else if (alts1.tail.isEmpty) alts1.head
        else owner.newOverloaded(info.prefix, alts1)
      }
      else if (cond(this)) this
      else NoSymbol

    def suchThat(cond: Symbol => Boolean): Symbol = {
      val result = filter(cond)
      assert(!result.isOverloaded, result.alternatives)
      result
    }

    @inline final def map(f: Symbol => Symbol): Symbol = if (this eq NoSymbol) this else f(this)

// ------ cloneing -------------------------------------------------------------------

    /** A clone of this symbol. */
    final def cloneSymbol: TypeOfClonedSymbol =
      cloneSymbol(owner)

    /** A clone of this symbol, but with given owner. */
    final def cloneSymbol(newOwner: Symbol): TypeOfClonedSymbol =
      cloneSymbol(newOwner, _rawflags)
    final def cloneSymbol(newOwner: Symbol, newFlags: Long): TypeOfClonedSymbol =
      cloneSymbol(newOwner, newFlags, null)
    final def cloneSymbol(newOwner: Symbol, newFlags: Long, newName: Name): TypeOfClonedSymbol = {
      val clone = cloneSymbolImpl(newOwner, newFlags)
      ( clone
          setPrivateWithin privateWithin
          setInfo (this.info cloneInfo clone)
          setAnnotations this.annotations
      )
      this.attachments.all.foreach(clone.updateAttachment)
      if (clone.thisSym != clone)
        clone.typeOfThis = (clone.typeOfThis cloneInfo clone)

      if (newName ne null)
        clone setName asNameType(newName)

      clone
    }

    /** Internal method to clone a symbol's implementation with the given flags and no info. */
    def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeOfClonedSymbol

// ------ access to related symbols --------------------------------------------------

    /** The next enclosing class. */
    def enclClass: Symbol = if (isClass) this else owner.enclClass

    /** The next enclosing method. */
    def enclMethod: Symbol = if (isSourceMethod) this else owner.enclMethod

    /** The primary constructor of a class. */
    def primaryConstructor: Symbol = NoSymbol

    /** The self symbol (a TermSymbol) of a class with explicit self type, or else the
     *  symbol itself (a TypeSymbol).
     *
     *  WARNING: you're probably better off using typeOfThis, as it's more uniform across classes with and without self variables.
     *
     *  Example by Paul:
     *   scala> trait Foo1 { }
     *   scala> trait Foo2 { self => }
     *   scala> intp("Foo1").thisSym
     *   res0: $r.intp.global.Symbol = trait Foo1
     *
     *   scala> intp("Foo2").thisSym
     *   res1: $r.intp.global.Symbol = value self
     *
     *  Martin says: The reason `thisSym' is `this' is so that thisType can be this.thisSym.tpe.
     *  It's a trick to shave some cycles off.
     *
     *  Morale: DO:    if (clazz.typeOfThis.typeConstructor ne clazz.typeConstructor) ...
     *          DON'T: if (clazz.thisSym ne clazz) ...
     *
     */
    def thisSym: Symbol = this

    /** The type of `this` in a class, or else the type of the symbol itself. */
    def typeOfThis = thisSym.tpe

    /** If symbol is a class, the type <code>this.type</code> in this class,
     * otherwise <code>NoPrefix</code>.
     * We always have: thisType <:< typeOfThis
     */
    def thisType: Type = NoPrefix

    /** For a case class, the symbols of the accessor methods, one for each
     *  argument in the first parameter list of the primary constructor.
     *  The empty list for all other classes.
     */
    final def caseFieldAccessors: List[Symbol] =
      (info.decls filter (_.isCaseAccessorMethod)).toList

    final def constrParamAccessors: List[Symbol] =
      info.decls.filter(sym => !sym.isMethod && sym.isParamAccessor).toList

    /** The symbol accessed by this accessor (getter or setter) function. */
    final def accessed: Symbol = accessed(owner.info)

    /** The symbol accessed by this accessor function, but with given owner type. */
    final def accessed(ownerTp: Type): Symbol = {
      assert(hasAccessorFlag, this)
      ownerTp decl nme.getterToLocal(getterName.toTermName)
    }

    /** The module corresponding to this module class (note that this
     *  is not updated when a module is cloned), or NoSymbol if this is not a ModuleClass.
     */
    def sourceModule: Symbol = NoSymbol

    /** The implementation class of a trait.  If available it will be the
     *  symbol with the same owner, and the name of this symbol with $class
     *  appended to it.
     */
    final def implClass: Symbol = owner.info.decl(tpnme.implClassName(name))

    /** The class that is logically an outer class of given `clazz`.
     *  This is the enclosing class, except for classes defined locally to constructors,
     *  where it is the outer class of the enclosing class.
     */
    final def outerClass: Symbol =
      if (owner.isClass) owner
      else if (isClassLocalToConstructor) owner.enclClass.outerClass
      else owner.outerClass

    /** For a paramaccessor: a superclass paramaccessor for which this symbol
     *  is an alias, NoSymbol for all others.
     */
    def alias: Symbol = NoSymbol

    /** For a lazy value, its lazy accessor. NoSymbol for all others. */
    def lazyAccessor: Symbol = NoSymbol

    /** If this is a lazy value, the lazy accessor; otherwise this symbol. */
    def lazyAccessorOrSelf: Symbol = if (isLazy) lazyAccessor else this

    /** If this is an accessor, the accessed symbol.  Otherwise, this symbol. */
    def accessedOrSelf: Symbol = if (hasAccessorFlag) accessed else this

    /** For an outer accessor: The class from which the outer originates.
     *  For all other symbols: NoSymbol
     */
    def outerSource: Symbol = NoSymbol

    /** The superclass of this class. */
    def superClass: Symbol = if (info.parents.isEmpty) NoSymbol else info.parents.head.typeSymbol
    def parentSymbols: List[Symbol] = info.parents map (_.typeSymbol)

    /** The directly or indirectly inherited mixins of this class
     *  except for mixin classes inherited by the superclass. Mixin classes appear
     *  in linearization order.
     */
    def mixinClasses: List[Symbol] = {
      val sc = superClass
      ancestors takeWhile (sc ne _)
    }

    /** All directly or indirectly inherited classes. */
    def ancestors: List[Symbol] = info.baseClasses drop 1

    @inline final def enclosingSuchThat(p: Symbol => Boolean): Symbol = {
      var sym = this
      while (sym != NoSymbol && !p(sym))
        sym = sym.owner
      sym
    }

    /** The package class containing this symbol, or NoSymbol if there
     *  is not one.
     *  TODO: formulate as enclosingSuchThat, after making sure
     *        we can start with current symbol rather than onwner.
     *  TODO: Also harmonize with enclClass, enclMethod etc.
     */
    def enclosingPackageClass: Symbol = {
      var sym = this.owner
      while (sym != NoSymbol && !sym.isPackageClass)
        sym = sym.owner
      sym
    }

    /** The package class containing this symbol, or NoSymbol if there
     *  is not one. */
    def enclosingRootClass: Symbol = enclosingSuchThat(_.isRoot)

    /** The package containing this symbol, or NoSymbol if there
     *  is not one. */
    def enclosingPackage: Symbol = enclosingPackageClass.companionModule

    /** Return the original enclosing method of this symbol. It should return
     *  the same thing as enclMethod when called before lambda lift,
     *  but it preserves the original nesting when called afterwards.
     *
     *  @note This method is NOT available in the presentation compiler run. The
     *        originalOwner map is not populated for memory considerations (the symbol
     *        may hang on to lazy types and in turn to whole (outdated) compilation units.
     */
    def originalEnclosingMethod: Symbol = {
      assert(!forInteractive, "originalOwner is not kept in presentation compiler runs.")
      if (isMethod) this
      else {
        val owner = originalOwner.getOrElse(this, rawowner)
        if (isLocalDummy) owner.enclClass.primaryConstructor
        else owner.originalEnclosingMethod
      }
    }

    /** The method or class which logically encloses the current symbol.
     *  If the symbol is defined in the initialization part of a template
     *  this is the template's primary constructor, otherwise it is
     *  the physically enclosing method or class.
     *
     *  Example 1:
     *
     *  def f() { val x = { def g() = ...; g() } }
     *
     *  In this case the owner chain of `g` is `x`, followed by `f` and
     *  `g.logicallyEnclosingMember == f`.
     *
     *  Example 2:
     *
     *  class C {
     *    def <init> = { ... }
     *    val x = { def g() = ...; g() } }
     *  }
     *
     *  In this case the owner chain of `g` is `x`, followed by `C` but
     *  g.logicallyEnclosingMember is the primary constructor symbol `<init>`
     *  (or, for traits: `$init`) of `C`.
     *
     */
    def logicallyEnclosingMember: Symbol =
      if (isLocalDummy) enclClass.primaryConstructor
      else if (isMethod || isClass) this
      else owner.logicallyEnclosingMember

    /** Kept for source compatibility with 2.9. Scala IDE for Eclipse relies on this. */
    @deprecated("Use enclosingTopLevelClass", "2.10.0")
    def toplevelClass: Symbol = enclosingTopLevelClass

    /** The top-level class containing this symbol. */
    def enclosingTopLevelClass: Symbol =
      if (owner.isPackageClass) {
        if (isClass) this else moduleClass
      } else owner.enclosingTopLevelClass

    /** Is this symbol defined in the same scope and compilation unit as `that` symbol? */
    def isCoDefinedWith(that: Symbol) = (
         (this.rawInfo ne NoType)
      && (this.effectiveOwner == that.effectiveOwner)
      && (   !this.effectiveOwner.isPackageClass
          || (this.sourceFile eq null)
          || (that.sourceFile eq null)
          || (this.sourceFile.path == that.sourceFile.path)  // Cheap possibly wrong check, then expensive normalization
          || (this.sourceFile.canonicalPath == that.sourceFile.canonicalPath)
      )
    )

    /** The internal representation of classes and objects:
     *
     *  class Foo is "the class" or sometimes "the plain class"
     * object Foo is "the module"
     * class Foo$ is "the module class" (invisible to the user: it implements object Foo)
     *
     * class Foo  <
     *  ^  ^ (2)   \
     *  |  |  |     \
     *  | (5) |     (3)
     *  |  |  |       \
     * (1) v  v        \
     * object Foo (4)-> > class Foo$
     *
     * (1) companionClass
     * (2) companionModule
     * (3) linkedClassOfClass
     * (4) moduleClass
     * (5) companionSymbol
     */

    /** For a module: the class with the same name in the same package.
     *  For all others: NoSymbol
     *  Note: does not work for classes owned by methods, see Namers.companionClassOf
     *
     *  object Foo  .  companionClass -->  class Foo
     *
     *  !!! linkedClassOfClass depends on companionClass on the module class getting
     *  to the class.  As presently implemented this potentially returns class for
     *  any symbol except NoSymbol.
     */
    def companionClass: Symbol = flatOwnerInfo.decl(name.toTypeName).suchThat(_ isCoDefinedWith this)

    /** For a class: the module or case class factory with the same name in the same package.
     *  For all others: NoSymbol
     *  Note: does not work for modules owned by methods, see Namers.companionModuleOf
     *
     *  class Foo  .  companionModule -->  object Foo
     */
    def companionModule: Symbol = NoSymbol

    /** For a module: its linked class
     *  For a plain class: its linked module or case factory.
     *  Note: does not work for modules owned by methods, see Namers.companionSymbolOf
     *
     *  class Foo  <-- companionSymbol -->  object Foo
     */
    def companionSymbol: Symbol = NoSymbol

    /** For a module class: its linked class
     *   For a plain class: the module class of its linked module.
     *
     *  class Foo  <-- linkedClassOfClass -->  class Foo$
     */
    def linkedClassOfClass: Symbol = NoSymbol

    /**
     * Returns the rawInfo of the owner. If the current phase has flat classes,
     * it first applies all pending type maps to this symbol.
     *
     * assume this is the ModuleSymbol for B in the following definition:
     *   package p { class A { object B { val x = 1 } } }
     *
     * The owner after flatten is "package p" (see "def owner"). The flatten type map enters
     * symbol B in the decls of p. So to find a linked symbol ("object B" or "class B")
     * we need to apply flatten to B first. Fixes #2470.
     */
    protected final def flatOwnerInfo: Type = {
      if (needsFlatClasses)
        info
      owner.rawInfo
    }

    /** If this symbol is an implementation class, its interface, otherwise the symbol itself
     *  The method follows two strategies to determine the interface.
     *   - during or after erasure, it takes the last parent of the implementation class
     *     (which is always the interface, by convention)
     *   - before erasure, it looks up the interface name in the scope of the owner of the class.
     *     This only works for implementation classes owned by other classes or traits.
     *     !!! Why?
     */
    def toInterface: Symbol = this

    /** The module class corresponding to this module.
     */
    def moduleClass: Symbol = NoSymbol

    /** The non-private symbol whose type matches the type of this symbol
     *  in in given class.
     *
     *  @param ofclazz   The class containing the symbol's definition
     *  @param site      The base type from which member types are computed
     */
    final def matchingSymbol(ofclazz: Symbol, site: Type): Symbol = {
      //OPT cut down on #closures by special casing non-overloaded case
      // was: ofclazz.info.nonPrivateDecl(name) filter (sym =>
      //        !sym.isTerm || (site.memberType(this) matches site.memberType(sym)))
      val result = ofclazz.info.nonPrivateDecl(name)
      def qualifies(sym: Symbol) = !sym.isTerm || (site.memberType(this) matches site.memberType(sym))
      if ((result eq NoSymbol) || !result.isOverloaded && qualifies(result)) result
      else result filter qualifies
    }

    /** The non-private member of `site` whose type and name match the type of this symbol. */
    final def matchingSymbol(site: Type, admit: Long = 0L): Symbol =
      site.nonPrivateMemberAdmitting(name, admit).filter(sym =>
        !sym.isTerm || (site.memberType(this) matches site.memberType(sym)))

    /** The symbol, in class `ofclazz`, that is overridden by this symbol.
     *
     *  @param ofclazz is a base class of this symbol's owner.
     */
    final def overriddenSymbol(ofclazz: Symbol): Symbol =
      if (isClassConstructor) NoSymbol else matchingSymbol(ofclazz, owner.thisType)

    /** The symbol overriding this symbol in given subclass `ofclazz`.
     *
     *  @param ofclazz is a subclass of this symbol's owner
     */
    final def overridingSymbol(ofclazz: Symbol): Symbol =
      if (isClassConstructor) NoSymbol else matchingSymbol(ofclazz, ofclazz.thisType)

    /** Returns all symbols overriden by this symbol. */
    final def allOverriddenSymbols: List[Symbol] =
      if (!owner.isClass) Nil
      else owner.ancestors map overriddenSymbol filter (_ != NoSymbol)

    /** Equivalent to allOverriddenSymbols.nonEmpty, but more efficient. */
    // !!! When if ever will this answer differ from .isOverride?
    // How/where is the OVERRIDE flag managed, as compared to how checks
    // based on type membership will evaluate?
    def isOverridingSymbol = owner.isClass && (
      owner.ancestors exists (cls => matchingSymbol(cls, owner.thisType) != NoSymbol)
    )
    /** Equivalent to allOverriddenSymbols.head (or NoSymbol if no overrides) but more efficient. */
    def nextOverriddenSymbol: Symbol = {
      if (owner.isClass) owner.ancestors foreach { base =>
        val sym = overriddenSymbol(base)
        if (sym != NoSymbol)
          return sym
      }
      NoSymbol
    }

    /** Returns all symbols overridden by this symbol, plus all matching symbols
     *  defined in parents of the selftype.
     */
    final def extendedOverriddenSymbols: List[Symbol] =
      if (!owner.isClass) Nil
      else owner.thisSym.ancestors map overriddenSymbol filter (_ != NoSymbol)

    /** The symbol accessed by a super in the definition of this symbol when
     *  seen from class `base`. This symbol is always concrete.
     *  pre: `this.owner` is in the base class sequence of `base`.
     */
    final def superSymbol(base: Symbol): Symbol = {
      var bcs = base.info.baseClasses.dropWhile(owner != _).tail
      var sym: Symbol = NoSymbol
      while (!bcs.isEmpty && sym == NoSymbol) {
        if (!bcs.head.isImplClass)
          sym = matchingSymbol(bcs.head, base.thisType).suchThat(!_.isDeferred)
        bcs = bcs.tail
      }
      sym
    }

    /** The getter of this value or setter definition in class `base`, or NoSymbol if
     *  none exists.
     */
    final def getter(base: Symbol): Symbol = base.info.decl(getterName) filter (_.hasAccessorFlag)

    def getterName: TermName = (
      if (isSetter) nme.setterToGetter(name.toTermName)
      else if (nme.isLocalName(name)) nme.localToGetter(name.toTermName)
      else name.toTermName
    )

    /** The setter of this value or getter definition, or NoSymbol if none exists */
    final def setter(base: Symbol): Symbol = setter(base, false)

    final def setter(base: Symbol, hasExpandedName: Boolean): Symbol = {
      var sname = nme.getterToSetter(nme.getterName(name.toTermName))
      if (hasExpandedName) sname = nme.expandedSetterName(sname, base)
      base.info.decl(sname) filter (_.hasAccessorFlag)
    }

    /** If this is a derived value class, return its unbox method
     *  or NoSymbol if it does not exist.
     */
    def derivedValueClassUnbox: Symbol = NoSymbol

     /** The case module corresponding to this case class
     *  @pre case class is a member of some other class or package
     */
    final def caseModule: Symbol = {
      var modname = name.toTermName
      if (privateWithin.isClass && !privateWithin.isModuleClass && !hasFlag(EXPANDEDNAME))
        modname = nme.expandedName(modname, privateWithin)
      initialize.owner.info.decl(modname).suchThat(_.isModule)
    }

    /** If this symbol is a type parameter skolem (not an existential skolem!)
     *  its corresponding type parameter, otherwise this */
    def deSkolemize: Symbol = this

    /** If this symbol is an existential skolem the location (a Tree or null)
     *  where it was unpacked. Resulttype is AnyRef because trees are not visible here. */
    def unpackLocation: AnyRef = null

    /** Remove private modifier from symbol `sym`s definition. If `sym` is a
     *  is not a constructor nor a static module rename it by expanding its name to avoid name clashes
     *  @param base  the fully qualified name of this class will be appended if name expansion is needed
     */
    final def makeNotPrivate(base: Symbol) {
      if (this.isPrivate) {
        setFlag(notPRIVATE)
        // Marking these methods final causes problems for proxies which use subclassing. If people
        // write their code with no usage of final, we probably shouldn't introduce it ourselves
        // unless we know it is safe. ... Unfortunately if they aren't marked final the inliner
        // thinks it can't inline them. So once again marking lateFINAL, and in genjvm we no longer
        // generate ACC_FINAL on "final" methods which are actually lateFINAL.
        if (isMethod && !isDeferred)
          setFlag(lateFINAL)
        if (!isStaticModule && !isClassConstructor) {
          expandName(base)
          if (isModule) moduleClass.makeNotPrivate(base)
        }
      }
    }

    /** Remove any access boundary and clear flags PROTECTED | PRIVATE.
     */
    def makePublic = this setPrivateWithin NoSymbol resetFlag AccessFlags

    /** The first parameter to the first argument list of this method,
     *  or NoSymbol if inapplicable.
     */
    def firstParam = info.params match {
      case p :: _ => p
      case _      => NoSymbol
    }
/* code for fixing nested objects
    def expandModuleClassName() {
      name = newTypeName(name.toString + "$")
    }

    def isExpandedModuleClass: Boolean = name(name.length - 1) == '$'
*/

    /** Desire to re-use the field in ClassSymbol which stores the source
     *  file to also store the classfile, but without changing the behavior
     *  of sourceFile (which is expected at least in the IDE only to
     *  return actual source code.) So sourceFile has classfiles filtered out.
     */
    private def sourceFileOnly(file: AbstractFile): AbstractFile =
      if ((file eq null) || (file.path endsWith ".class")) null else file

    private def binaryFileOnly(file: AbstractFile): AbstractFile =
      if ((file eq null) || !(file.path endsWith ".class")) null else file

    final def binaryFile: AbstractFile = binaryFileOnly(associatedFile)
    final def sourceFile: AbstractFile = sourceFileOnly(associatedFile)

    /** Overridden in ModuleSymbols to delegate to the module class. */
    def associatedFile: AbstractFile = enclosingTopLevelClass.associatedFile
    def associatedFile_=(f: AbstractFile) { abort("associatedFile_= inapplicable for " + this) }

    @deprecated("Use associatedFile_= instead", "2.10.0")
    def sourceFile_=(f: AbstractFile): Unit = associatedFile_=(f)

    /** If this is a sealed class, its known direct subclasses.
     *  Otherwise, the empty set.
     */
    def children: Set[Symbol] = Set()

    /** Recursively assemble all children of this symbol.
     */
    def sealedDescendants: Set[Symbol] = children.flatMap(_.sealedDescendants) + this

    @inline final def orElse(alt: => Symbol): Symbol = if (this ne NoSymbol) this else alt
    @inline final def andAlso(f: Symbol => Unit): Symbol = { if (this ne NoSymbol) f(this) ; this }

// ------ toString -------------------------------------------------------------------

    /** A tag which (in the ideal case) uniquely identifies class symbols */
    final def tag: Int = fullName.##

    /** The simple name of this Symbol */
    final def simpleName: Name = name

    /** The String used to order otherwise identical sealed symbols.
     *  This uses data which is stable across runs and variable classpaths
     *  (the initial Name) before falling back on id, which varies depending
     *  on exactly when a symbol is loaded.
     */
    final def sealedSortName: String = initName + "#" + id

    /** String representation of symbol's definition key word */
    final def keyString: String =
      if (isJavaInterface) "interface"
      else if (isTrait && !isImplClass) "trait"
      else if (isClass) "class"
      else if (isType && !isParameter) "type"
      else if (isVariable) "var"
      else if (isPackage) "package"
      else if (isModule) "object"
      else if (isSourceMethod) "def"
      else if (isTerm && (!isParameter || isParamAccessor)) "val"
      else ""

    private case class SymbolKind(accurate: String, sanitized: String, abbreviation: String)
    private def symbolKind: SymbolKind = {
      var kind =
        if (isTermMacro) ("macro method", "macro method", "MAC")
        else if (isInstanceOf[FreeTermSymbol]) ("free term", "free term", "FTE")
        else if (isInstanceOf[FreeTypeSymbol]) ("free type", "free type", "FTY")
        else if (isPackage) ("package", "package", "PK")
        else if (isPackageClass) ("package class", "package", "PKC")
        else if (isPackageObject) ("package object", "package", "PKO")
        else if (isPackageObjectClass) ("package object class", "package", "PKOC")
        else if (isAnonymousClass) ("anonymous class", "anonymous class", "AC")
        else if (isRefinementClass) ("refinement class", "", "RC")
        else if (isModule) ("module", "object", "MOD")
        else if (isModuleClass) ("module class", "object", "MODC")
        else if (isGetter) ("getter", if (isSourceMethod) "method" else "value", "GET")
        else if (isSetter) ("setter", if (isSourceMethod) "method" else "value", "SET")
        else if (isTerm && isLazy) ("lazy value", "lazy value", "LAZ")
        else if (isVariable) ("field", "variable", "VAR")
        else if (isImplClass) ("implementation class", "class", "IMPL")
        else if (isTrait) ("trait", "trait", "TRT")
        else if (isClass) ("class", "class", "CLS")
        else if (isType) ("type", "type", "TPE")
        else if (isClassConstructor && isPrimaryConstructor) ("primary constructor", "constructor", "PCTOR")
        else if (isClassConstructor) ("constructor", "constructor", "CTOR")
        else if (isSourceMethod) ("method", "method", "METH")
        else if (isTerm) ("value", "value", "VAL")
        else ("", "", "???")
      if (isSkolem) kind = (kind._1, kind._2, kind._3 + "#SKO")
      SymbolKind(kind._1, kind._2, kind._3)
    }

    /** Accurate string representation of symbols' kind, suitable for developers. */
    final def accurateKindString: String =
      symbolKind.accurate

    /** String representation of symbol's kind, suitable for the masses. */
    private def sanitizedKindString: String =
      symbolKind.sanitized

    /** String representation of symbol's kind, suitable for the masses. */
    protected[scala] def abbreviatedKindString: String =
      symbolKind.abbreviation

    final def kindString: String =
      if (settings.debug.value) accurateKindString
      else sanitizedKindString

    /** If the name of the symbol's owner should be used when you care about
     *  seeing an interesting name: in such cases this symbol is e.g. a method
     *  parameter with a synthetic name, a constructor named "this", an object
     *  "package", etc.  The kind string, if non-empty, will be phrased relative
     *  to the name of the owner.
     */
    def hasMeaninglessName = (
         isSetterParameter        // x$1
      || isClassConstructor       // this
      || isRefinementClass        // <refinement>
      || (name == nme.PACKAGE)    // package
    )

    /** String representation of symbol's simple name.
     *  If !settings.debug translates expansions of operators back to operator symbol.
     *  E.g. $eq => =.
     *  If settings.uniqid, adds id.
     *  If settings.Yshowsymkinds, adds abbreviated symbol kind.
     */
    def nameString: String = (
      if (!settings.uniqid.value && !settings.Yshowsymkinds.value) "" + originalName.decode
      else if (settings.uniqid.value && !settings.Yshowsymkinds.value) originalName.decode + "#" + id
      else if (!settings.uniqid.value && settings.Yshowsymkinds.value) originalName.decode + "#" + abbreviatedKindString
      else originalName.decode + "#" + id + "#" + abbreviatedKindString
    )

    def fullNameString: String = {
      def recur(sym: Symbol): String = {
        if (sym.isRootSymbol || sym == NoSymbol) sym.nameString
        else if (sym.owner.isEffectiveRoot) sym.nameString
        else recur(sym.effectiveOwner.enclClass) + "." + sym.nameString
      }

      recur(this)
    }

    /** If settings.uniqid is set, the symbol's id, else "" */
    final def idString = if (settings.uniqid.value) "#"+id else ""

    /** String representation, including symbol's kind e.g., "class Foo", "method Bar".
     *  If hasMeaninglessName is true, uses the owner's name to disambiguate identity.
     */
    override def toString: String = compose(
      kindString,
      if (hasMeaninglessName) owner.decodedName + idString else nameString
    )

    /** String representation of location.
     */
    def ownsString: String = {
      val owns = effectiveOwner
      if (owns.isClass && !owns.isEmptyPrefix) "" + owns else ""
    }

    /** String representation of location, plus a preposition.  Doesn't do much,
     *  for backward compatibility reasons.
     */
    def locationString: String = ownsString match {
      case ""   => ""
      case s    => " in " + s
    }
    def fullLocationString: String = toString + locationString
    def signatureString: String    = if (hasRawInfo) infoString(rawInfo) else "<_>"

    /** String representation of symbol's definition following its name */
    final def infoString(tp: Type): String = {
      def parents = (
        if (settings.debug.value) parentsString(tp.parents)
        else briefParentsString(tp.parents)
      )
      if (isType) typeParamsString(tp) + (
        if (isClass) " extends " + parents
        else if (isAliasType) " = " + tp.resultType
        else tp.resultType match {
          case rt @ TypeBounds(_, _) => "" + rt
          case rt                    => " <: " + rt
        }
      )
      else if (isModule) "" //  avoid "object X of type X.type"
      else tp match {
        case PolyType(tparams, res)  => typeParamsString(tp) + infoString(res)
        case NullaryMethodType(res)  => infoString(res)
        case MethodType(params, res) => valueParamsString(tp) + infoString(res)
        case _                       => ": " + tp
      }
    }

    def infosString = infos.toString
    def debugLocationString = fullLocationString + " (flags: " + debugFlagString + ")"

    private def defStringCompose(infoString: String) = compose(
      flagString,
      keyString,
      varianceString + nameString + infoString + flagsExplanationString
    )
    /** String representation of symbol's definition.  It uses the
     *  symbol's raw info to avoid forcing types.
     */
    def defString = defStringCompose(signatureString)

    /** String representation of symbol's definition, using the supplied
     *  info rather than the symbol's.
     */
    def defStringSeenAs(info: Type) = defStringCompose(infoString(info))

    /** Concatenate strings separated by spaces */
    private def compose(ss: String*) = ss filter (_ != "") mkString " "

    def isSingletonExistential =
      nme.isSingletonName(name) && (info.bounds.hi.typeSymbol isSubClass SingletonClass)

    /** String representation of existentially bound variable */
    def existentialToString =
      if (isSingletonExistential && !settings.debug.value)
        "val " + tpnme.dropSingletonName(name) + ": " + dropSingletonType(info.bounds.hi)
      else defString
  }
  implicit val SymbolTag = ClassTag[Symbol](classOf[Symbol])

  /** A class for term symbols */
  class TermSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends Symbol(initOwner, initPos, initName) with TermSymbolApi {
    private[this] var _referenced: Symbol = NoSymbol
    privateWithin = NoSymbol

    type TypeOfClonedSymbol = TermSymbol

    private[this] var _rawname: TermName = initName
    def rawname = _rawname
    def name = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      _rawname
    }
    override def name_=(name: Name) {
      if (name != rawname) {
        super.name_=(name)   // logging
        changeNameInOwners(name)
        _rawname = name.toTermName
      }
    }
    final def asNameType(n: Name) = n.toTermName

    /** Term symbols with the exception of static parts of Java classes and packages.
     */
    override def isValue     = !(isModule && hasFlag(PACKAGE | JAVA))
    override def isVariable  = isMutable && !isMethod
    override def isTermMacro = hasFlag(MACRO)

    // interesting only for lambda lift. Captured variables are accessed from inner lambdas.
    override def isCapturedVariable = hasAllFlags(MUTABLE | CAPTURED) && !hasFlag(METHOD)

    override def companionSymbol: Symbol = companionClass
    override def moduleClass = if (isModule) referenced else NoSymbol

    override def hasDefault         = this hasFlag DEFAULTPARAM // overloaded with TRAIT
    override def isBridge           = this hasFlag BRIDGE
    override def isEarlyInitialized = this hasFlag PRESUPER
    override def isMethod           = this hasFlag METHOD
    override def isModule           = this hasFlag MODULE
    override def isOverloaded       = this hasFlag OVERLOADED
    override def isPackage          = this hasFlag PACKAGE
    override def isValueParameter   = this hasFlag PARAM

    override def isSetterParameter  = isValueParameter && owner.isSetter
    override def isAccessor         = this hasFlag ACCESSOR
    override def isGetter           = isAccessor && !isSetter
    override def isSetter           = isAccessor && nme.isSetterName(name)  // todo: make independent of name, as this can be forged.
    override def isLocalDummy       = nme.isLocalDummyName(name)
    override def isClassConstructor = name == nme.CONSTRUCTOR
    override def isMixinConstructor = name == nme.MIXIN_CONSTRUCTOR
    override def isConstructor      = nme.isConstructorName(name)

    override def isPackageObject  = isModule && (name == nme.PACKAGE)
    override def isStable = !isUnstable
    private def isUnstable = (
         isMutable
      || (hasFlag(METHOD | BYNAMEPARAM) && !hasFlag(STABLE))
      || (tpe.isVolatile && !hasAnnotation(uncheckedStableClass))
    )

    // The name in comments is what it is being disambiguated from.
    // TODO - rescue CAPTURED from BYNAMEPARAM so we can see all the names.
    override def resolveOverloadedFlag(flag: Long) = flag match {
      case DEFAULTPARAM => "<defaultparam>" // TRAIT
      case MIXEDIN      => "<mixedin>"      // EXISTENTIAL
      case LABEL        => "<label>"        // CONTRAVARIANT / INCONSTRUCTOR
      case PRESUPER     => "<presuper>"     // IMPLCLASS
      case BYNAMEPARAM  => if (this.isValueParameter) "<bynameparam>" else "<captured>" // COVARIANT
      case _            => super.resolveOverloadedFlag(flag)
    }

    def referenced: Symbol = _referenced
    def referenced_=(x: Symbol) { _referenced = x }

    def existentialBound = singletonBounds(this.tpe)

    def cloneSymbolImpl(owner: Symbol, newFlags: Long): TermSymbol =
      owner.newTermSymbol(name, pos, newFlags).copyAttrsFrom(this)

    def copyAttrsFrom(original: TermSymbol): this.type = {
      referenced = original.referenced
      this
    }

    private val validAliasFlags = SUPERACCESSOR | PARAMACCESSOR | MIXEDIN | SPECIALIZED

    override def alias: Symbol =
      if (hasFlag(validAliasFlags)) initialize.referenced
      else NoSymbol

    def setAlias(alias: Symbol): TermSymbol = {
      assert(alias != NoSymbol, this)
      assert(!alias.isOverloaded, alias)
      assert(hasFlag(validAliasFlags), this)

      referenced = alias
      this
    }

    override def outerSource: Symbol =
      if (originalName == nme.OUTER) initialize.referenced
      else NoSymbol

    def setModuleClass(clazz: Symbol): TermSymbol = {
      assert(isModule, this)
      referenced = clazz
      this
    }

    def setLazyAccessor(sym: Symbol): TermSymbol = {
      assert(isLazy && (referenced == NoSymbol || referenced == sym), (this, debugFlagString, referenced, sym))
      referenced = sym
      this
    }

    override def lazyAccessor: Symbol = {
      assert(isLazy, this)
      referenced
    }

    /** change name by appending $$<fully-qualified-name-of-class `base`>
     *  Do the same for any accessed symbols or setters/getters
     */
    override def expandName(base: Symbol) {
      if (!hasFlag(EXPANDEDNAME)) {
        setFlag(EXPANDEDNAME)
        if (hasAccessorFlag && !isDeferred) {
          accessed.expandName(base)
        }
        else if (hasGetter) {
          getter(owner).expandName(base)
          setter(owner).expandName(base)
        }
        name = nme.expandedName(name.toTermName, base)
      }
    }

    protected def doCookJavaRawInfo() {
      def cook(sym: Symbol) {
        require(sym.isJavaDefined, sym)
        // @M: I think this is more desirable, but Martin prefers to leave raw-types as-is as much as possible
        // object rawToExistentialInJava extends TypeMap {
        //   def apply(tp: Type): Type = tp match {
        //     // any symbol that occurs in a java sig, not just java symbols
        //     // see http://lampsvn.epfl.ch/trac/scala/ticket/2454#comment:14
        //     case TypeRef(pre, sym, List()) if !sym.typeParams.isEmpty =>
        //       val eparams = typeParamsToExistentials(sym, sym.typeParams)
        //       existentialAbstraction(eparams, TypeRef(pre, sym, eparams map (_.tpe)))
        //     case _ =>
        //       mapOver(tp)
        //   }
        // }
        val tpe1 = rawToExistential(sym.tpe)
        // println("cooking: "+ sym +": "+ sym.tpe +" to "+ tpe1)
        if (tpe1 ne sym.tpe) {
          sym.setInfo(tpe1)
        }
      }

      if (isJavaDefined)
        cook(this)
      else if (isOverloaded)
        for (sym2 <- alternatives)
          if (sym2.isJavaDefined)
            cook(sym2)
    }
  }
  implicit val TermSymbolTag = ClassTag[TermSymbol](classOf[TermSymbol])

  /** A class for module symbols */
  class ModuleSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends TermSymbol(initOwner, initPos, initName) with ModuleSymbolApi {
    private var flatname: TermName = null

    override def associatedFile = moduleClass.associatedFile
    override def associatedFile_=(f: AbstractFile) { moduleClass.associatedFile = f }

    override def moduleClass = referenced
    override def companionClass =
      flatOwnerInfo.decl(name.toTypeName).suchThat(sym => sym.isClass && (sym isCoDefinedWith this))

    override def owner = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      if (!isMethod && needsFlatClasses) rawowner.owner
      else rawowner
    }
    override def name: TermName = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      if (!isMethod && needsFlatClasses) {
        if (flatname eq null)
          flatname = nme.flattenedName(rawowner.name, rawname)

        flatname
      }
      else rawname
    }
  }
  implicit val ModuleSymbolTag = ClassTag[ModuleSymbol](classOf[ModuleSymbol])

  /** A class for method symbols */
  class MethodSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends TermSymbol(initOwner, initPos, initName) with MethodSymbolApi {
    private[this] var mtpePeriod       = NoPeriod
    private[this] var mtpePre: Type    = _
    private[this] var mtpeResult: Type = _
    private[this] var mtpeInfo: Type   = _

    override def isLabel         = this hasFlag LABEL
    override def isVarargsMethod = this hasFlag VARARGS
    override def isLiftedMethod  = this hasFlag LIFTED

    // TODO - this seems a strange definition for "isSourceMethod", given that
    // it does not make any specific effort to exclude synthetics.  Figure out what
    // this method is really for and what logic makes sense.
    override def isSourceMethod  = !(this hasFlag STABLE)  // exclude all accessors
    // unfortunately having the CASEACCESSOR flag does not actually mean you
    // are a case accessor (you can also be a field.)
    override def isCaseAccessorMethod = isCaseAccessor

    def typeAsMemberOf(pre: Type): Type = {
      if (mtpePeriod == currentPeriod) {
        if ((mtpePre eq pre) && (mtpeInfo eq info)) return mtpeResult
      } else if (isValid(mtpePeriod)) {
        mtpePeriod = currentPeriod
        if ((mtpePre eq pre) && (mtpeInfo eq info)) return mtpeResult
      }
      val res = pre.computeMemberType(this)
      mtpePeriod = currentPeriod
      mtpePre = pre
      mtpeInfo = info
      mtpeResult = res
      res
    }

    override def isVarargs: Boolean = definitions.isVarArgsList(paramss.flatten)

    override def returnType: Type = {
      def loop(tpe: Type): Type =
        tpe match {
          case NullaryMethodType(ret) => loop(ret)
          case MethodType(_, ret) => loop(ret)
          case PolyType(_, tpe) => loop(tpe)
          case tpe => tpe
        }
      loop(info)
    }
  }
  implicit val MethodSymbolTag = ClassTag[MethodSymbol](classOf[MethodSymbol])

  class AliasTypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSymbol
    final override def isAliasType = true
    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSymbol =
      owner.newNonClassSymbol(name, pos, newFlags)
  }

  class AbstractTypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSymbol
    final override def isAbstractType = true
    override def existentialBound = this.info
    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSymbol =
      owner.newNonClassSymbol(name, pos, newFlags)
  }

  /** A class of type symbols. Alias and abstract types are direct instances
   *  of this class. Classes are instances of a subclass.
   */
  abstract class TypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends Symbol(initOwner, initPos, initName) with TypeSymbolApi {
    privateWithin = NoSymbol
    private[this] var _rawname: TypeName = initName

    type TypeOfClonedSymbol >: Null <: TypeSymbol
    // cloneSymbolImpl still abstract in TypeSymbol.

    def rawname = _rawname
    def name = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      _rawname
    }
    final def asNameType(n: Name) = n.toTypeName

    override def isNonClassType = true
    override def isTypeMacro    = hasFlag(MACRO)

    override def resolveOverloadedFlag(flag: Long) = flag match {
      case TRAIT         => "<trait>"         // DEFAULTPARAM
      case EXISTENTIAL   => "<existential>"   // MIXEDIN
      case COVARIANT     => "<covariant>"     // BYNAMEPARAM / CAPTURED
      case CONTRAVARIANT => "<contravariant>" // LABEL / INCONSTRUCTOR (overridden again in ClassSymbol)
      case _             => super.resolveOverloadedFlag(flag)
    }

    private var tyconCache: Type = null
    private var tyconRunId = NoRunId
    private var tpeCache: Type = _
    private var tpePeriod = NoPeriod

    override def isAbstractType          = this hasFlag DEFERRED
    override def isContravariant         = this hasFlag CONTRAVARIANT
    override def isCovariant             = this hasFlag COVARIANT
    override def isExistentialQuantified = isExistentiallyBound && !isSkolem
    override def isExistentiallyBound    = this hasFlag EXISTENTIAL
    override def isTypeParameter         = isTypeParameterOrSkolem && !isSkolem
    override def isTypeParameterOrSkolem = this hasFlag PARAM

    /** Overridden in subclasses for which it makes sense.
     */
    def existentialBound: Type = abort("unexpected type: "+this.getClass+ " "+debugLocationString)

    // TODO - don't allow names to be renamed in this unstructured a fashion.
    // Rename as little as possible.  Enforce invariants on all renames.
    override def name_=(name: Name) {
      if (name != rawname) {
        super.name_=(name)  // logging
        changeNameInOwners(name)
        _rawname = name.toTypeName
      }
    }

    private def newPrefix = if (this hasFlag EXISTENTIAL | PARAM) NoPrefix else owner.thisType
    private def newTypeRef(targs: List[Type]) = typeRef(newPrefix, this, targs)

    /** Let's say you have a type definition
     *
     *  {{{
     *    type T <: Number
     *  }}}
     *
     *  and tsym is the symbol corresponding to T. Then
     *
     *  {{{
     *    tsym.info = TypeBounds(Nothing, Number)
     *    tsym.tpe  = TypeRef(NoPrefix, T, List())
     *  }}}
     */
    override def tpe: Type = {
      if (tpeCache eq NoType) throw CyclicReference(this, typeConstructor)
      if (tpePeriod != currentPeriod) {
        if (isValid(tpePeriod)) {
          tpePeriod = currentPeriod
        } else {
          if (isInitialized) tpePeriod = currentPeriod
          tpeCache = NoType
          val targs =
            if (phase.erasedTypes && this != ArrayClass) List()
            else unsafeTypeParams map (_.typeConstructor)
            //@M! use typeConstructor to generate dummy type arguments,
            // sym.tpe should not be called on a symbol that's supposed to be a higher-kinded type
            // memberType should be used instead, that's why it uses tpeHK and not tpe
          tpeCache = newTypeRef(targs)
        }
      }
      assert(tpeCache ne null/*, "" + this + " " + phase*/)//debug
      tpeCache
    }

    /** @M -- tpe vs tpeHK:
     *
     *    tpe: creates a TypeRef with dummy type arguments and kind *
     *  tpeHK: creates a TypeRef with no type arguments but with type parameters
     *
     * If typeParams is nonEmpty, calling tpe may hide errors or
     * introduce spurious ones. (For example, when deriving a type from
     * the symbol of a type argument that may be higher-kinded.) As far
     * as I can tell, it only makes sense to call tpe in conjunction
     * with a substitution that replaces the generated dummy type
     * arguments by their actual types.
     *
     * TODO: the above conditions desperately need to be enforced by code.
     */
    override def tpeHK = typeConstructor // @M! used in memberType

    override def typeConstructor: Type = {
      if ((tyconCache eq null) || tyconRunId != currentRunId) {
        tyconCache = newTypeRef(Nil)
        tyconRunId = currentRunId
      }
      assert(tyconCache ne null)
      tyconCache
    }

    override def info_=(tp: Type) {
      tpePeriod = NoPeriod
      tyconCache = null
      super.info_=(tp)
    }

    final override def isNonBottomSubClass(that: Symbol): Boolean = (
      (this eq that) || this.isError || that.isError ||
      info.baseTypeIndex(that) >= 0
    )

    override def reset(completer: Type): this.type = {
      super.reset(completer)
      tpePeriod = NoPeriod
      tyconRunId = NoRunId
      this
    }

    /*** example:
     * public class Test3<T> {}
     * public class Test1<T extends Test3> {}
     * info for T in Test1 should be >: Nothing <: Test3[_]
     */
    protected def doCookJavaRawInfo() {
      if (isJavaDefined || owner.isJavaDefined) {
        val tpe1 = rawToExistential(info)
        // println("cooking type: "+ this +": "+ info +" to "+ tpe1)
        if (tpe1 ne info) {
          setInfo(tpe1)
        }
      }
    }

    if (Statistics.hotEnabled) Statistics.incCounter(typeSymbolCount)
  }
  implicit val TypeSymbolTag = ClassTag[TypeSymbol](classOf[TypeSymbol])

  /** A class for type parameters viewed from inside their scopes
   *
   *  @param origin  Can be either a tree, or a symbol, or null.
   *  If skolem got created from newTypeSkolem (called in Namers), origin denotes
   *  the type parameter from which the skolem was created. If it got created from
   *  skolemizeExistential, origin is either null or a Tree. If it is a Tree, it indicates
   *  where the skolem was introduced (this is important for knowing when to pack it
   *  again into ab Existential). origin is `null` only in skolemizeExistentials called
   *  from <:< or isAsSpecific, because here its value does not matter.
   *  I believe the following invariant holds:
   *
   *     origin.isInstanceOf[Symbol] == !hasFlag(EXISTENTIAL)
   */
  class TypeSkolem protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName, origin: AnyRef)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSkolem
    /** The skolemization level in place when the skolem was constructed */
    val level = skolemizationLevel

    final override def isSkolem = true

    // a type symbol bound by an existential type, for instance the T in
    // List[T] forSome { type T }
    override def isExistentialSkolem = this hasFlag EXISTENTIAL
    override def isGADTSkolem        = this hasAllFlags GADT_SKOLEM_FLAGS
    override def isTypeSkolem        = this hasFlag PARAM
    override def isAbstractType      = this hasFlag DEFERRED

    override def isExistentialQuantified = false
    override def existentialBound = if (isAbstractType) this.info else super.existentialBound

    /** If typeskolem comes from a type parameter, that parameter, otherwise skolem itself */
    override def deSkolemize = origin match {
      case s: Symbol => s
      case _ => this
    }

    /** If type skolem comes from an existential, the tree where it was created */
    override def unpackLocation = origin

    //@M! (not deSkolemize.typeParams!!), also can't leave superclass definition: use info, not rawInfo
    override def typeParams = info.typeParams

    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSkolem =
      owner.newTypeSkolemSymbol(name, origin, pos, newFlags)

    override def nameString: String =
      if (settings.debug.value) (super.nameString + "&" + level)
      else super.nameString
  }

  /** A class for class symbols */
  class ClassSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) with ClassSymbolApi {
    type TypeOfClonedSymbol = ClassSymbol

    private[this] var flatname: TypeName            = _
    private[this] var _associatedFile: AbstractFile = _
    private[this] var thissym: Symbol               = this

    private[this] var thisTypeCache: Type      = _
    private[this] var thisTypePeriod           = NoPeriod

    override def resolveOverloadedFlag(flag: Long) = flag match {
      case INCONSTRUCTOR => "<inconstructor>" // INCONSTRUCTOR / CONTRAVARIANT / LABEL
      case EXISTENTIAL   => "<existential>"   // EXISTENTIAL / MIXEDIN
      case IMPLCLASS     => "<implclass>"     // IMPLCLASS / PRESUPER
      case _             => super.resolveOverloadedFlag(flag)
    }

    final override def isNonClassType = false
    final override def isAbstractType = false
    final override def isAliasType = false

    override def isAbstractClass           = this hasFlag ABSTRACT
    override def isCaseClass               = this hasFlag CASE
    override def isClassLocalToConstructor = this hasFlag INCONSTRUCTOR
    override def isImplClass               = this hasFlag IMPLCLASS
    override def isModuleClass             = this hasFlag MODULE
    override def isPackageClass            = this hasFlag PACKAGE
    override def isTrait                   = this hasFlag TRAIT

    override def isAnonOrRefinementClass = isAnonymousClass || isRefinementClass
    override def isAnonymousClass        = name containsName tpnme.ANON_CLASS_NAME
    override def isConcreteClass         = !(this hasFlag ABSTRACT | TRAIT)
    override def isJavaInterface         = hasAllFlags(JAVA | TRAIT)
    override def isNestedClass           = !owner.isPackageClass
    override def isNumericValueClass     = definitions.isNumericValueClass(this)
    override def isNumeric               = isNumericValueClass
    override def isPackageObjectClass    = isModuleClass && (name == tpnme.PACKAGE)
    override def isPrimitiveValueClass   = definitions.isPrimitiveValueClass(this)
    override def isPrimitive             = isPrimitiveValueClass

    // The corresponding interface is the last parent by convention.
    private def lastParent = if (tpe.parents.isEmpty) NoSymbol else tpe.parents.last.typeSymbol
    override def toInterface: Symbol = (
      if (isImplClass) {
        if (phase.next.erasedTypes) lastParent
        else owner.info.decl(tpnme.interfaceName(name))
      }
      else super.toInterface
    )

    /** Is this class locally defined?
     *  A class is local, if
     *   - it is anonymous, or
     *   - its owner is a value
     *   - it is defined within a local class
     */
    override def isLocalClass = (
         isAnonOrRefinementClass
      || isLocal
      || !owner.isPackageClass && owner.isLocalClass
    )
    override def isStableClass = (this hasFlag STABLE) || checkStable()

    private def checkStable() = {
      def hasNoAbstractTypeMember(clazz: Symbol): Boolean =
        (clazz hasFlag STABLE) || {
          var e = clazz.info.decls.elems
          while ((e ne null) && !(e.sym.isAbstractType && info.member(e.sym.name) == e.sym))
            e = e.next
          e == null
        }
      (info.baseClasses forall hasNoAbstractTypeMember) && {
        setFlag(STABLE)
        true
      }
    }

    override def enclClassChain = this :: owner.enclClassChain

    /** A helper method that factors the common code used the discover a
     *  companion module of a class. If a companion module exists, its symbol is
     *  returned, otherwise, `NoSymbol` is returned.
     */
    protected final def companionModule0: Symbol =
      flatOwnerInfo.decl(name.toTermName).suchThat(
        sym => sym.isModule && (sym isCoDefinedWith this) && !sym.isMethod)

    override def companionModule    = companionModule0
    override def companionSymbol    = companionModule0
    override def linkedClassOfClass = companionModule.moduleClass

    override def sourceModule       = if (isModuleClass) companionModule else NoSymbol

    override def existentialBound = GenPolyType(this.typeParams, TypeBounds.upper(this.classBound))

    def primaryConstructorName = if (this hasFlag TRAIT | IMPLCLASS) nme.MIXIN_CONSTRUCTOR else nme.CONSTRUCTOR

    override def primaryConstructor = {
      val c = info decl primaryConstructorName
      if (c.isOverloaded) c.alternatives.head else c
    }

    override def associatedFile = if (owner.isPackageClass) _associatedFile else super.associatedFile
    override def associatedFile_=(f: AbstractFile) { _associatedFile = f }

    override def reset(completer: Type): this.type = {
      super.reset(completer)
      thissym = this
      this
    }

    /** the type this.type in this class */
    override def thisType: Type = {
      val period = thisTypePeriod
      if (period != currentPeriod) {
        thisTypePeriod = currentPeriod
        if (!isValid(period)) thisTypeCache = ThisType(this)
      }
      thisTypeCache
    }

    override def owner: Symbol = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      if (needsFlatClasses) rawowner.owner else rawowner
    }

    override def name: TypeName = {
      if (Statistics.canEnable) Statistics.incCounter(nameCount)
      if (needsFlatClasses) {
        if (flatname eq null)
          flatname = nme.flattenedName(rawowner.name, rawname).toTypeName

        flatname
      }
      else rawname
    }

    /** A symbol carrying the self type of the class as its type */
    override def thisSym: Symbol = thissym

    /** Sets the self type of the class */
    override def typeOfThis_=(tp: Type) {
      thissym = newThisSym(nme.this_, pos).setInfo(tp)
    }

    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): ClassSymbol = {
      val clone = owner.newClassSymbol(name, pos, newFlags)
      if (thisSym != this) {
        clone.typeOfThis = typeOfThis
        clone.thisSym setName thisSym.name
      }
      if (_associatedFile ne null)
        clone.associatedFile = _associatedFile

      clone
    }

    override def derivedValueClassUnbox =
      // (info.decl(nme.unbox)) orElse      uncomment once we accept unbox methods
      (info.decls.find(_ hasAllFlags PARAMACCESSOR | METHOD) getOrElse
       NoSymbol)

    private[this] var childSet: Set[Symbol] = Set()
    override def children = childSet
    override def addChild(sym: Symbol) { childSet = childSet + sym }

    if (Statistics.hotEnabled) Statistics.incCounter(classSymbolCount)
  }
  implicit val ClassSymbolTag = ClassTag[ClassSymbol](classOf[ClassSymbol])

  /** A class for module class symbols
   *  Note: Not all module classes are of this type; when unpickled, we get
   *  plain class symbols!
   */
  class ModuleClassSymbol protected[Symbols] (owner: Symbol, pos: Position, name: TypeName)
  extends ClassSymbol(owner, pos, name) {
    private[this] var module: Symbol        = _
    private[this] var typeOfThisCache: Type = _
    private[this] var typeOfThisPeriod      = NoPeriod

    private var implicitMembersCacheValue: Scope = EmptyScope
    private var implicitMembersCacheKey1: Type = NoType
    private var implicitMembersCacheKey2: ScopeEntry = null

    override def isModuleClass = true
    override def linkedClassOfClass = companionClass

    /** the self type of an object foo is foo.type, not class<foo>.this.type
     */
    override def typeOfThis = {
      val period = typeOfThisPeriod
      if (period != currentPeriod) {
        typeOfThisPeriod = currentPeriod
        if (!isValid(period))
          typeOfThisCache = singleType(owner.thisType, sourceModule)
      }
      typeOfThisCache
    }

    def implicitMembers: Scope = {
      val tp = info
      if ((implicitMembersCacheKey1 ne tp) || (implicitMembersCacheKey2 ne tp.decls.elems)) {
        // Skip a package object class, because the members are also in
        // the package and we wish to avoid spurious ambiguities as in pos/t3999.
        if (!isPackageObjectClass) {
          implicitMembersCacheKey1 = tp
          implicitMembersCacheKey2 = tp.decls.elems
          implicitMembersCacheValue = tp.implicitMembers
        }
      }
      implicitMembersCacheValue
    }
    // The null check seems to be necessary for the reifier.
    override def sourceModule = if (module ne null) module else companionModule
    override def sourceModule_=(module: Symbol) { this.module = module }
  }

  class PackageObjectClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position)
  extends ModuleClassSymbol(owner0, pos0, tpnme.PACKAGE) {
    final override def isPackageObjectClass   = true
    final override def isPackageObjectOrClass = true
    final override def skipPackageObject      = owner
    final override def setName(name: Name): this.type = {
      abort("Can't rename a package object to " + name)
    }
  }

  trait ImplClassSymbol extends ClassSymbol {
    override def sourceModule = companionModule
    // override def isImplClass = true
    override def typeOfThis  = thisSym.tpe // don't use the ModuleClassSymbol typeOfThisCache.
  }

  class PackageClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position, name0: TypeName)
  extends ModuleClassSymbol(owner0, pos0, name0) {
    override def sourceModule = companionModule
    override def enclClassChain = Nil
    override def isPackageClass = true
  }

  class RefinementClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position)
  extends ClassSymbol(owner0, pos0, tpnme.REFINE_CLASS_NAME) {
    override def name_=(name: Name) {
      assert(false, "Cannot set name of RefinementClassSymbol to " + name)
      super.name_=(name)
    }
    override def isRefinementClass       = true
    override def isAnonOrRefinementClass = true
    override def isLocalClass            = true
    override def hasMeaninglessName      = true
    override def companionModule: Symbol = NoSymbol

    /** The mentioned twist.  A refinement class has transowner X
     *  if any of its parents has transowner X.
     */
    override def hasTransOwner(sym: Symbol) = (
         super.hasTransOwner(sym)
      || info.parents.exists(_.typeSymbol hasTransOwner sym)
    )
  }
  trait StubSymbol extends Symbol {
    protected def missingMessage: String

    /** Fail the stub by throwing a [[scala.reflect.internal.MissingRequirementError]]. */
    override final def failIfStub() = {MissingRequirementError.signal(missingMessage)} //

    /** Fail the stub by reporting an error to the reporter, setting the IS_ERROR flag
      * on this symbol, and returning the dummy value `alt`.
      */
    private def fail[T](alt: T): T = {
      // Avoid issuing lots of redundant errors
      if (!hasFlag(IS_ERROR)) {
        globalError(missingMessage)
        if (settings.debug.value)
          (new Throwable).printStackTrace

        this setFlag IS_ERROR
      }
      alt
    }
    // This one doesn't call fail because SpecializeTypes winds up causing
    // isMonomorphicType to be called, which calls this, which would fail us
    // in all the scenarios we're trying to keep from failing.
    override def originalInfo    = NoType
    override def associatedFile  = owner.associatedFile
    override def info            = fail(NoType)
    override def rawInfo         = fail(NoType)
    override def companionSymbol = fail(NoSymbol)

    debugwarn("creating stub symbol to defer error: " + missingMessage)
  }
  class StubClassSymbol(owner0: Symbol, name0: TypeName, protected val missingMessage: String) extends ClassSymbol(owner0, owner0.pos, name0) with StubSymbol
  class StubTermSymbol(owner0: Symbol, name0: TermName, protected val missingMessage: String) extends TermSymbol(owner0, owner0.pos, name0) with StubSymbol

  trait FreeSymbol extends Symbol {
    def origin: String
  }
  class FreeTermSymbol(name0: TermName, value0: => Any, val origin: String) extends TermSymbol(NoSymbol, NoPosition, name0) with FreeSymbol with FreeTermSymbolApi {
    def value = value0
  }
  implicit val FreeTermSymbolTag = ClassTag[FreeTermSymbol](classOf[FreeTermSymbol])

  class FreeTypeSymbol(name0: TypeName, val origin: String) extends TypeSkolem(NoSymbol, NoPosition, name0, NoSymbol) with FreeSymbol with FreeTypeSymbolApi
  implicit val FreeTypeSymbolTag = ClassTag[FreeTypeSymbol](classOf[FreeTypeSymbol])

  /** An object representing a missing symbol */
  class NoSymbol protected[Symbols]() extends Symbol(null, NoPosition, nme.NO_NAME) {
    final type NameType = TermName
    type TypeOfClonedSymbol = NoSymbol

    def asNameType(n: Name) = n.toTermName
    def rawname = nme.NO_NAME
    def name = nme.NO_NAME
    override def name_=(n: Name) = abort("Cannot set NoSymbol's name to " + n)

    synchronized {
      setInfo(NoType)
      privateWithin = this
    }
    override def info_=(info: Type) = {
      infos = TypeHistory(1, NoType, null)
      unlock()
      validTo = currentPeriod
    }
    override def flagMask = AllFlags
    override def exists = false
    override def isHigherOrderTypeParameter = false
    override def companionClass = NoSymbol
    override def companionModule = NoSymbol
    override def companionSymbol = NoSymbol
    override def isSubClass(that: Symbol) = false
    override def filter(cond: Symbol => Boolean) = this
    override def defString: String = toString
    override def locationString: String = ""
    override def enclClassChain = Nil
    override def enclClass: Symbol = this
    override def enclosingTopLevelClass: Symbol = this
    override def enclosingPackageClass: Symbol = this
    override def enclMethod: Symbol = this
    override def associatedFile = null
    override def ownerChain: List[Symbol] = List()
    override def ownersIterator: Iterator[Symbol] = Iterator.empty
    override def alternatives: List[Symbol] = List()
    override def reset(completer: Type): this.type = this
    override def info: Type = NoType
    override def existentialBound: Type = NoType
    override def rawInfo: Type = NoType
    protected def doCookJavaRawInfo() {}
    override def accessBoundary(base: Symbol): Symbol = enclosingRootClass
    def cloneSymbolImpl(owner: Symbol, newFlags: Long) = abort("NoSymbol.clone()")
    override def originalEnclosingMethod = this

    override def owner: Symbol =
      abort("no-symbol does not have an owner")
    override def typeConstructor: Type =
      abort("no-symbol does not have a type constructor (this may indicate scalac cannot find fundamental classes)")
  }

  protected def makeNoSymbol: NoSymbol = new NoSymbol

  lazy val NoSymbol: NoSymbol = makeNoSymbol

  /** Derives a new list of symbols from the given list by mapping the given
   *  list across the given function.  Then fixes the info of all the new symbols
   *  by substituting the new symbols for the original symbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    symFn   the function to create new symbols
   *  @return           the new list of info-adjusted symbols
   */
  def deriveSymbols(syms: List[Symbol], symFn: Symbol => Symbol): List[Symbol] = {
    val syms1 = syms map symFn
    syms1 map (_ substInfo (syms, syms1))
  }

  /** Derives a new Type by first deriving new symbols as in deriveSymbols,
   *  then performing the same oldSyms => newSyms substitution on `tpe` as is
   *  performed on the symbol infos in deriveSymbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    symFn   the function to create new symbols
   *  @param    tpe     the prototypical type
   *  @return           the new symbol-subsituted type
   */
  def deriveType(syms: List[Symbol], symFn: Symbol => Symbol)(tpe: Type): Type = {
    val syms1 = deriveSymbols(syms, symFn)
    tpe.substSym(syms, syms1)
  }
  /** Derives a new Type by instantiating the given list of symbols as
   *  WildcardTypes.
   *
   *  @param    syms    the symbols to replace
   *  @return           the new type with WildcardType replacing those syms
   */
  def deriveTypeWithWildcards(syms: List[Symbol])(tpe: Type): Type = {
    if (syms.isEmpty) tpe
    else tpe.instantiateTypeParams(syms, syms map (_ => WildcardType))
  }
  /** Convenience functions which derive symbols by cloning.
   */
  def cloneSymbols(syms: List[Symbol]): List[Symbol] =
    deriveSymbols(syms, _.cloneSymbol)
  def cloneSymbolsAtOwner(syms: List[Symbol], owner: Symbol): List[Symbol] =
    deriveSymbols(syms, _ cloneSymbol owner)

  /** Clone symbols and apply the given function to each new symbol's info.
   *
   *  @param    syms    the prototypical symbols
   *  @param    infoFn  the function to apply to the infos
   *  @return           the newly created, info-adjusted symbols
   */
  def cloneSymbolsAndModify(syms: List[Symbol], infoFn: Type => Type): List[Symbol] =
    cloneSymbols(syms) map (_ modifyInfo infoFn)
  def cloneSymbolsAtOwnerAndModify(syms: List[Symbol], owner: Symbol, infoFn: Type => Type): List[Symbol] =
    cloneSymbolsAtOwner(syms, owner) map (_ modifyInfo infoFn)

  /** Functions which perform the standard clone/substituting on the given symbols and type,
   *  then call the creator function with the new symbols and type as arguments.
   */
  def createFromClonedSymbols[T](syms: List[Symbol], tpe: Type)(creator: (List[Symbol], Type) => T): T = {
    val syms1 = cloneSymbols(syms)
    creator(syms1, tpe.substSym(syms, syms1))
  }
  def createFromClonedSymbolsAtOwner[T](syms: List[Symbol], owner: Symbol, tpe: Type)(creator: (List[Symbol], Type) => T): T = {
    val syms1 = cloneSymbolsAtOwner(syms, owner)
    creator(syms1, tpe.substSym(syms, syms1))
  }

  /** A deep map on a symbol's paramss.
   */
  def mapParamss[T](sym: Symbol)(f: Symbol => T): List[List[T]] = mmap(sym.info.paramss)(f)

  /** Return closest enclosing method, unless shadowed by an enclosing class. */
  // TODO Move back to ExplicitOuter when the other call site is removed.
  // no use of closures here in the interest of speed.
  final def closestEnclMethod(from: Symbol): Symbol =
    if (from.isSourceMethod) from
    else if (from.isClass) NoSymbol
    else closestEnclMethod(from.owner)

  /** An exception for cyclic references of symbol definitions */
  case class CyclicReference(sym: Symbol, info: Type)
  extends TypeError("illegal cyclic reference involving " + sym) {
    if (settings.debug.value) printStackTrace()
  }

  /** A class for type histories */
  private sealed case class TypeHistory(var validFrom: Period, info: Type, prev: TypeHistory) {
    assert((prev eq null) || phaseId(validFrom) > phaseId(prev.validFrom), this)
    assert(validFrom != NoPeriod, this)

    override def toString() =
      "TypeHistory(" + phaseOf(validFrom)+":"+runId(validFrom) + "," + info + "," + prev + ")"

    def toList: List[TypeHistory] = this :: ( if (prev eq null) Nil else prev.toList )
  }

// ----- Hoisted closures and convenience methods, for compile time reductions -------

  private[scala] final val symbolIsPossibleInRefinement = (sym: Symbol) => sym.isPossibleInRefinement
  private[scala] final val symbolIsNonVariant = (sym: Symbol) => sym.variance == 0

  @tailrec private[scala] final
  def allSymbolsHaveOwner(syms: List[Symbol], owner: Symbol): Boolean = syms match {
    case sym :: rest => sym.owner == owner && allSymbolsHaveOwner(rest, owner)
    case _ => true
  }


// -------------- Statistics --------------------------------------------------------

  Statistics.newView("#symbols")(ids)

}

object SymbolsStats {
  val typeSymbolCount     = Statistics.newCounter("#type symbols")
  val classSymbolCount    = Statistics.newCounter("#class symbols")
  val flagsCount          = Statistics.newCounter("#flags ops")
  val ownerCount          = Statistics.newCounter("#owner ops")
  val nameCount           = Statistics.newCounter("#name ops")
}